Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-03T15:57:30.307Z Has data issue: false hasContentIssue false

TYCHONOFF HED-SPACES AND ZEMANIAN EXTENSIONS OF S4.3

Published online by Cambridge University Press:  14 January 2018

GURAM BEZHANISHVILI*
Affiliation:
Department of Mathematical Sciences, New Mexico State University
NICK BEZHANISHVILI*
Affiliation:
Institute for Logic, Language and Computation, University of Amsterdam
JOEL LUCERO-BRYAN*
Affiliation:
Department of Applied Mathematics and Sciences, Khalifa University of Science and Technology
JAN VAN MILL*
Affiliation:
Korteweg-de Vries Institute for Mathematics, University of Amsterdam
*
*DEPARTMENT OF MATHEMATICAL SCIENCES NEW MEXICO STATE UNIVERSITY LAS CRUCES, NM 88003, USA E-mail: [email protected]
INSTITUTE FOR LOGIC, LANGUAGE AND COMPUTATION UNIVERSITY OF AMSTERDAM 1090 GE AMSTERDAM, THE NETHERLANDS E-mail: [email protected]
DEPARTMENT OF APPLIED MATHEMATICS AND SCIENCES KHALIFA UNIVERSITY OF SCIENCE AND TECHNOLOGY ABU DHABI, UAE E-mail: [email protected]
§KORTEWEG-DE VRIES INSTITUTE FOR MATHEMATICS UNIVERSITY OF AMSTERDAM 1098 XG AMSTERDAM, THE NETHERLANDS E-mail: [email protected]

Abstract

We introduce the concept of a Zemanian logic above S4.3 and prove that an extension of S4.3 is the logic of a Tychonoff HED-space iff it is Zemanian.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BIBLIOGRAPHY

Benthem, J. van & Bezhanishvili, G. (2007). Modal logics of space. In Aiello, M., Pratt-Hartmann, I., & Benthem, J. van, editors. Handbook of Spatial Logics. Dordrecht: Springer, pp. 217298.CrossRefGoogle Scholar
Bezhanishvili, G., Bezhanishvili, N., Lucero-Bryan, J., & Mill, J. van (2015). S4.3 and hereditarily extremally disconnected spaces. Georgian Mathematical Journal, 22(4), 469475.CrossRefGoogle Scholar
Bezhanishvili, G., Bezhanishvili, N., Lucero-Bryan, J., & Mill, J. van (to appear). Krull dimension in modal logic. The Journal of Symbolic Logic.Google Scholar
Bezhanishvili, G., Esakia, L., & Gabelaia, D. (2005). Some results on modal axiomatization and definability for topological spaces. Studia Logica, 81(3), 325355.CrossRefGoogle Scholar
Bezhanishvili, G., Gabelaia, D., & Lucero-Bryan, J. (2015). Modal logics of metric spaces. Review of Symbolic Logic, 8(1), 178191.CrossRefGoogle Scholar
Bezhanishvili, G. & Harding, J. (2012). Modal logics of Stone spaces. Order, 29(2), 271292.CrossRefGoogle Scholar
Blackburn, P., de Rijke, M., & Venema, Y. (2001). Modal Logic. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Błaszczyk, A., Rajagopalan, M., & Szymanski, A. (1993). Spaces which are hereditarily extremally disconnected. Journal of the Ramanujan Mathematical Society, 8(1–2), 8194.Google Scholar
Bull, R. A. (1966). That all normal extensions of S4.3 have the finite model property. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 12, 341344.CrossRefGoogle Scholar
Chagrov, A. & Zakharyaschev, M. (1997). Modal Logic. New York: Oxford University Press.CrossRefGoogle Scholar
Dow, A. & Mill, J, . van (2007). On n-to-one continuous images of β. Studia Scientiarum Mathematicarum Hungarica, 44(3), 355366.CrossRefGoogle Scholar
Eckertson, F. W. (1997). Resolvable, not maximally resolvable spaces. Topology and its Applications, 79(1), 111.CrossRefGoogle Scholar
Efimov, B. A. (1970). Extremally disconnected bicompacta and absolutes (on the occasion of the one hundredth anniversary of the birth of Felix Hausdorff). Trudy Moskovskogo Mathematicheskogo Obshchestva, 23, 235276.Google Scholar
Engelking, R. (1989). General Topology (second edition). Berlin: Heldermann Verlag.Google Scholar
Fine, K. (1971). The logics containing S4.3. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 17, 371376.CrossRefGoogle Scholar
Fine, K. (1974). An ascending chain of S4 logics. Theoria, 40(2), 110116.CrossRefGoogle Scholar
Gleason, A. M. (1958). Projective topological spaces. Illinois Journal of Mathematics, 2, 482489.CrossRefGoogle Scholar
Kracht, M. (1999). Tools and Techniques in Modal Logic. Studies in Logic and the Foundations of Mathematics, Vol. 142. Amsterdam: North-Holland Publishing Co.CrossRefGoogle Scholar
Kremer, P. (2013). Strong completeness of S4 for any dense-in-itself metric space. Review of Symbolic Logic, 6(3), 545570.CrossRefGoogle Scholar
McKinsey, J. C. C. & Tarski, A. (1944). The algebra of topology. Annals of Mathematics, 45, 141191.CrossRefGoogle Scholar
Mill, J. van (1984). An introduction to βω . In Kunen, K., & Vaughan, J., editors. Handbook of Set-Theoretic Topology. Amsterdam: North-Holland, pp. 503567.CrossRefGoogle Scholar
Rasiowa, H. & Sikorski, R. (1963). The Mathematics of Metamathematics. Monografie Matematyczne, Tom 41. Warsaw: Państwowe Wydawnictwo Naukowe.Google Scholar
Segerberg, K. (1971). An Essay in Classical Modal Logic, Vols. 1, 2, 3. Filosofiska Studier, No. 13. Uppsala: Filosofiska Föreningen och Filosofiska Institutionen vid Uppsala Universitet.Google Scholar
Walker, R. C. (1974). The Stone-Čech Compactification. New York-Berlin: Springer-Verlag.CrossRefGoogle Scholar