Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-03T19:14:15.440Z Has data issue: false hasContentIssue false

REVISION REVISITED

Published online by Cambridge University Press:  18 July 2012

LEON HORSTEN*
Affiliation:
University of Bristol
GRAHAM E. LEIGH*
Affiliation:
University of Oxford
HANNES LEITGEB*
Affiliation:
Ludwig Maximilians-Universität München
PHILIP WELCH*
Affiliation:
University of Bristol
*
*LEON HORSTEN, DEPARTMENT OF PHILOSOPHY, UNIVERSITY OF BRISTOL, 43 WOODLAND ROAD, BRISTOL BS81UU, UK. E-mail: [email protected]
GRAHAM LEIGH, FACULTY OF PHILOSOPHY, UNIVERSITY OF OXFORD, 10 MERTON STREET, OXFORD, OX14JJ, UK. E-mail: [email protected]
HANNES LEITGEB, FAKULTÄT FÜR PHILOSOPHIE, WISSENSCHAFTSTHEORIE, UND RELIGIONSWISSENSCHAFT, LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN, GESCHWISTER-SCHOLL-PLATZ 1, D-80539 MÜNCHEN, GERMANY. E-mail: [email protected]
§PHILIP WELCH, SCHOOL OF MATHEMATICS, UNIVERSITY OF BRISTOL, HOWARD HOUSE, UNIVERSITY WALK, BRISTOL BS81TW, UK. E-mail: [email protected]

Abstract

This article explores ways in which the Revision Theory of Truth can be expressed in the object language. In particular, we investigate the extent to which semantic deficiency, stable truth, and nearly stable truth can be so expressed, and we study different axiomatic systems for the Revision Theory of Truth.

Type
Research Articles
Copyright
Copyright © Association for Symbolic Logic 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BIBLIOGRAPHY

Beall, J. C., editor. (2007). Revenge of the Liar. New Essays on the Paradox. Oxford, UK: Oxford University Press.Google Scholar
Burgess, J. B. (1986). The Truth is never simple. Journal for Symbolic Logic, 51(3), 663681.CrossRefGoogle Scholar
Feferman, S. (1991). Reflecting on incompleteness. Journal of Symbolic Logic, 56, 149.Google Scholar
Feferman, S. (2008). Axioms for determinateness and truth. Review of Symbolic Logic, 1, 204217.CrossRefGoogle Scholar
Field, H. (2003). A revenge-immune solution to the semantic paradoxes. Journal of Philosophical Logic, 32, 139177.Google Scholar
Field, H. (2008). Saving Truth from Paradox. New York: Oxford University Press.Google Scholar
Friedman, H., & Sheard, M. (1987). An axiomatic approach to self-referential truth. Annals of Pure and Applied Logic, 33, 121.Google Scholar
Gupta, A., & Belnap, N. (1993). The Revision Theory of Truth. Cambridge, MA: MIT Press.Google Scholar
Halbach, V. (1994). A system of complete and consistent truth. Notre Dame Journal of Formal Logic, 35, 311327.Google Scholar
Halbach, V. (2011). Axiomatic Theories of Truth. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Halbach, V., & Horsten, L. (2005). The deflationist’s axioms for truth. In Beall, J. C., and Armour-Garb, B., editors. Deflationism and Paradox. Oxford, UK: Clarendon Press, pp. 203217.Google Scholar
Halbach, V., & Horsten, L. (2006). Axiomatizing Kripke’s theory of truth. Journal of Symbolic Logic, 71, 677712.CrossRefGoogle Scholar
Horsten, L. (2011). The Tarskian Turn. Deflationism and Axiomatic Truth. Cambridge, MA: MIT Press.Google Scholar
Kripke, S. (1975). Outline of a Theory of Truth. Reprinted in Martin (1984, pp. 5381).Google Scholar
Martin, R., editor. (1984). Recent Essays on Truth and the Liar Paradox. Oxford, UK: Oxford University Press.Google Scholar
McGee, V. (1985). How truth-like can a predicate be? A negative result. Journal of Philosophical Logic, 14, 399410.Google Scholar
Schmerl, U. R. (1979). A fine structure generated by reflection formulas over Primitive Recursive Arithmetic. In Boffa, M., van Dalen, D., and McAloon, K., editors. Logic Colloquium ’78. Amsterdam, The Netherlands: North Holland, pp. 335350.Google Scholar
Sheard, M. (2002). Truth, provability, and naive criteria. In Halbach, V., and Horsten, L., editors. Principles of Truth. Frankfurt, Germany: Hänsel-Hohenhausen, pp. 169181.Google Scholar
Smorynski, C. (1977). The incompleteness theorems. In Barwise, J., editor. Handbook of Mathematical Logic. Amsterdam, The Netherlands: North-Holland, pp. 821866.Google Scholar
Turner, R. (1990). Logics of truth. Notre Dame Journal of Formal Logic, 31, 308329.CrossRefGoogle Scholar
Welch, P. D. (2001). On Gupta-Belnap revision theories of truth, Kripkean fixed points, and the next stable set. Bulletin of Symbolic Logic, 7, 345360.CrossRefGoogle Scholar
Welch, P. D. (2008). Ultimate truth vis à vis Stable truth. Review of Symbolic Logic, 1, 126142.Google Scholar
Welch, P. D. (2011). Truth, logical validity, and determinateness: A commentary on Field’s “Saving Truth from Paradox.” Review of Symbolic Logic, 4(3), pp. 348359.Google Scholar
Welch, P. D. (Forthcoming). Some Observations on Truth Hierarchies. Submitted for publication.Google Scholar