Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T08:43:58.519Z Has data issue: false hasContentIssue false

THE RELEVANT FRAGMENT OF FIRST ORDER LOGIC

Published online by Cambridge University Press:  20 October 2015

GUILLERMO BADIA*
Affiliation:
University of Otago
*
*DEPARTMENT OF PHILOSOPHY UNIVERSITY OF OTAGO NEW ZEALAND

Abstract

Under a proper translation, the languages of propositional (and quantified relevant logic) with an absurdity constant are characterized as the fragments of first order logic preserved under (world-object) relevant directed bisimulations. Furthermore, the properties of pointed models axiomatizable by sets of propositional relevant formulas have a purely algebraic characterization. Finally, a form of the interpolation property holds for the relevant fragment of first order logic.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BIBLIOGRAPHY

Anderson, A. R., & Belnap, N. D. (1992). Entailment. The Logic of Relevance and Necessity, Vol. II. Princeton, NJ: Princeton University Press.Google Scholar
Bell, J. L., & Slomson, A. B. (2006). Models and Ultraproducts. Mineola, NY: Dover Publications.Google Scholar
Beall, J. C., et al. (2012). On the ternary relation and conditionality. Journal of Philosophical Logic, 41(3): 595612.CrossRefGoogle Scholar
Blackburn, P., de Rijke, M., & Venema, Y. (2001). Modal Logic. Cambridge: Cambridge University Press.Google Scholar
Brady, R. T. (1983). The simple consistency of a set theory based on the logic CSQ. Notre Dame Journal of Formal Logic, 24(4): 431449.Google Scholar
Brady, R. T., et al. (2003). Relevant Logics and their Rivals, Vol. 2. Aldershot: Ashgate.Google Scholar
Chagrov, A., & Zakharyaschev, M. (1997). Modal Logic. Oxford: Clarendon Press.Google Scholar
Chang, C. C. & Keisler, H. J. (1973). Model Theory. Amsterdam: North-Holland.Google Scholar
Dunn, M., & Restall, G. (2002). Relevance logic. In Gabbay, D., and Guenthner, F., editors. Handbook of Philosophical Logic. Berlin: Kluwer.Google Scholar
Hodges, W. (1993). Model Theory. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Fraissé, R. (1973). Course of Mathematical Logic, Vol. 1. Dordrecht: D. Reidel.Google Scholar
Mares, E. D. (1996). Relevant logic and the theory of information. Synthese, 109(3), 345360.Google Scholar
Mares, E. D., & Goldblatt, R. (2006). An alternative semantics for quantified relevant logic. Journal of Symbolic Logic, 71(1), 163187.Google Scholar
Kurtonina, N. & de Rijke, M. (1997). Simulating without negation. Journal of Logic and Computation, 7(4): 501522.Google Scholar
Levy, A. (2002). Basic Set Theory. Mineola, NY: Dover Publications.Google Scholar
McKubre-Jordens, M., & Weber, Z. (2012). Real analysis in paraconsistent logic. Journal of Philosophical Logic, 41(5): 901922.Google Scholar
Olkhovikov, G. K. (2013). Model-theoretic characterization of intuitionistic propositional formulas. The Review of Symbolic Logic, 6(2), 348365.Google Scholar
Restall, G. (1993). Simplified semantics for relevant logics (and some of their rivals). Journal of Philosophical Logic, 22, 481511.Google Scholar
Restall, G. (2000). An Introduction to Substructural Logics. London: Routledge.CrossRefGoogle Scholar
Robles, G., & Méndez, J. M. (2010). A Routley-Meyer type semantics for relevant logics including Br plus the disjunctive syllogism. Journal of Philosophical Logic, 39, 139158.CrossRefGoogle Scholar
Thomas, M. (forthcoming). A generalization of the Routley-Meyer semantic framework. Journal of Philosophical Logic, 117.Google Scholar
Urquhart, A. (1993). Failure of interpolation in relevant logics. Journal of Philosophical Logic, 22, 449479.Google Scholar
van Benthem, J. (2010). Modal Logic for Open Minds. Stanford, CA: CSLI Publications.Google Scholar
Weber, Z. (2010). Transfinite numbers in paraconsistent set theory. The Review of Symbolic Logic, 3(1), 7192.CrossRefGoogle Scholar