Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-03T16:27:39.834Z Has data issue: false hasContentIssue false

PROOF SYSTEMS FOR VARIOUS FDE-BASED MODAL LOGICS

Published online by Cambridge University Press:  17 June 2019

SERGEY DROBYSHEVICH*
Affiliation:
Laboratory of Computability Theory and Applied Logic, Sobolev Institute of Mathematics
HEINRICH WANSING*
Affiliation:
Institute of Philosophy I, Ruhr University Bochum
*
*LABORATORY OF COMPUTABILITY THEORY AND APPLIED LOGIC SOBOLEV INSTITUTE OF MATHEMATICS NOVOSIBIRSK, 630090, RUSSIAN FEDERATION E-mail: [email protected]
INSTITUTE OF PHILOSOPHY I RUHR UNIVERSITY BOCHUM BOCHUM, 44801, GERMANY E-mail: [email protected]

Abstract

We present novel proof systems for various FDE-based modal logics. Among the systems considered are a number of Belnapian modal logics introduced in Odintsov & Wansing (2010) and Odintsov & Wansing (2017), as well as the modal logic KN4 with strong implication introduced in Goble (2006). In particular, we provide a Hilbert-style axiom system for the logic $BK^{\square - } $ and characterize the logic BK as an axiomatic extension of the system $BK^{FS} $. For KN4 we provide both an FDE-style axiom system and a decidable sequent calculus for which a contraction elimination and a cut elimination result are shown.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BIBLIOGRAPHY

Anderson, A. R. & Belnap, N. D. (1975). Entailment: The Logic of Relevance and Necessity, Vol. 1. Princeton: Princeton University Press.Google Scholar
Arieli, O. & Avron, A. (1996). Reasoning with logical bilattices. Journal of Logic, Language and Information, 5 (1), 2563.CrossRefGoogle Scholar
Brady, R. T. (1982). Completeness proofs for the systems RM3 and BN4. Logique et Analyse, 25(97), 932.Google Scholar
Dragalin, A. G. (1988). Mathematical Intuitionism: Introduction to Proof Theory. Translations of Mathematical Monographs, Vol. 67. Providence, RI: American Mathematical Society.CrossRefGoogle Scholar
Dunn, J. M. (1995). Positive modal logic. Studia Logica, 55(2), 301317.CrossRefGoogle Scholar
Dunn, J. M. (2000). Partiality and its dual. Studia Logica, 66(1), 540.10.1023/A:1026740726955CrossRefGoogle Scholar
Fischer Servi, G. (1984). Axiomatizations for some intuitionistic modal logics. Rendiconti del Seminario Matematico Università e Politecnico di Torino, 42, 179194.Google Scholar
Goble, L. (2006). Paraconsistent modal logic. Logique et Analyse, 49(193), 329.Google Scholar
Jung, A. & Rivieccio, U. (2013). Kripke semantics for modal bilattice logic. Extended Abstracts of the 28th Annual ACM/IEEE Symposium on Logic in Computer Science. Washington, DC: IEEE Computer Society Press, pp. 438447.Google Scholar
Kracht, M. (1999). Tools and Techniques in Modal Logic. Amsterdam: Elsevier.Google Scholar
McGinnis, C. (2006). Tableau systems for some paraconsistent modal logics. Electronic Notes in Theoretical Computer Science, 143, 141157.CrossRefGoogle Scholar
Negri, S. & von Plato, J. (2008). Structural Proof Theory. Cambridge: Cambridge University Press.Google Scholar
Odintsov, S. P. & Wansing, H. (2010). Modal logics with Belnapian truth values. Journal of Applied Non-Classical Logics, 20(3), 279301.10.3166/jancl.20.279-304CrossRefGoogle Scholar
Odintsov, S. P. & Wansing, H. (2017). Disentangling FDE-based paraconsistent modal logics. Studia Logica, 105(6), 12211254.10.1007/s11225-017-9753-9CrossRefGoogle Scholar
Omori, H. & Wansing, H. (2017). 40 years of FDE: An introductory overview. Studia Logica, 105(6), 10211049.10.1007/s11225-017-9748-6CrossRefGoogle Scholar
Rivieccio, U. (2011). Paraconsistent modal logics. Electronic Notes in Theoretical Computer Science, 278, 173186.10.1016/j.entcs.2011.10.014CrossRefGoogle Scholar
Rivieccio, U., Jung, A., & Jansana, R. (2017). Four-valued modal logic: Kripke semantics and duality. Journal of Logic and Computation, 27(1), 155199.CrossRefGoogle Scholar
Scott, D. S. (1982). Domains for denotational semantics. In Nielsen, M. and Schmidt, E. M., editors. Automata, Languages and Programming. Berlin: Springer, pp. 577610.10.1007/BFb0012801CrossRefGoogle Scholar
Troelstra, A. & Schwichtenberg, H. (2000). Basic Proof Theory (second edition). Cambridge: Cambridge University Press.CrossRefGoogle Scholar