Article contents
PEIRCE’S CALCULI FOR CLASSICAL PROPOSITIONAL LOGIC
Published online by Cambridge University Press: 29 October 2018
Abstract
This article investigates Charles Peirce’s development of logical calculi for classical propositional logic in 1880–1896. Peirce’s 1880 work on the algebra of logic resulted in a successful calculus for Boolean algebra. This calculus, denoted by PC, is here presented as a sequent calculus and not as a natural deduction system. It is shown that Peirce’s aim was to present PC as a sequent calculus. The law of distributivity, which Peirce states in 1880, is proved using Peirce’s Rule, which is a residuation, in PC. The transitional systems of the algebra of the copula that Peirce develops since 1880 paved the way to the 1896 graphical system of the alpha graphs. It is shown how the rules of the alpha system reinterpret Boolean algebras, answering Peirce’s statement that logical graphs supply a new system of fundamental assumptions to logical algebra. A proof-theoretic analysis is given for the connection between PC and the alpha system.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Association for Symbolic Logic 2018
References
BIBLIOGRAPHY
- 12
- Cited by