Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T04:20:32.508Z Has data issue: false hasContentIssue false

THE LOGIC OF LEIBNIZ’S GENERALES INQUISITIONES DE ANALYSI NOTIONUM ET VERITATUM

Published online by Cambridge University Press:  18 July 2016

MARKO MALINK*
Affiliation:
New York University
ANUBAV VASUDEVAN*
Affiliation:
University of Chicago
*
*DEPARTMENT OF PHILOSOPHY NEW YORK UNIVERSITY 5 WASHINGTON PLACE NEW YORK, NY 10003 USA E-mail: [email protected]
DEPARTMENT OF PHILOSOPHY UNIVERSITY OF CHICAGO 1115 EAST 58th STREET CHICAGO, IL 60637 USA E-mail: [email protected]

Abstract

The Generales Inquisitiones de Analysi Notionum et Veritatum is Leibniz’s most substantive work in the area of logic. Leibniz’s central aim in this treatise is to develop a symbolic calculus of terms that is capable of underwriting all valid modes of syllogistic and propositional reasoning. The present paper provides a systematic reconstruction of the calculus developed by Leibniz in the Generales Inquisitiones. We investigate the most significant logical features of this calculus and prove that it is both sound and complete with respect to a simple class of enriched Boolean algebras which we call auto-Boolean algebras. Moreover, we show that Leibniz’s calculus can reproduce all the laws of classical propositional logic, thus allowing Leibniz to achieve his goal of reducing propositional reasoning to algebraic reasoning about terms.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BIBLIOGRAPHY

Adams, R. M. (1994). Leibniz: Determinist, Theist, Idealist. New York: Oxford University Press.Google Scholar
Arndt, H. W. (1971). Methodo scientifica pertractatum: Mos geometricus und Kalkülbegriff in der philosophischen Theorienbildung des 17. und 18. Jahrhunderts. Berlin: de Gruyter.CrossRefGoogle Scholar
Badesa, C. (2004). The Birth of Model Theory: Löwenheim’s Theorem in the Frame of the Theory of Relatives. Princeton: Princeton University Press.CrossRefGoogle Scholar
Barnes, J. (1983). Terms and sentences. Proceedings of the British Academy, 69, 279326.Google Scholar
Bassler, O. B. (1998). Leibniz on intension, extension, and the representation of syllogistic inference. Synthese, 116, 117139.CrossRefGoogle Scholar
Birkhoff, G. (1935). On the structure of abstract algebras. Mathematical Proceedings of the Cambridge Philosophical Society, 31, 433454.CrossRefGoogle Scholar
Bonevac, D., & Dever, J. (2012). A history of the connectives. In Gabbay, D. M., Pelletier, F. J., & Woods, J., editors. Logic: A History of its Central Concepts. Handbook of the History of Logic, Vol. 11. Amsterdam: Elsevier, pp. 175233.CrossRefGoogle Scholar
Boole, G. (1854). An Investigation of the Laws of Thought, on Which Are Founded the Mathematical Theories of Logic and Probabilities. London: Walton and Maberley.CrossRefGoogle Scholar
Burkhardt, H. (1974). Anmerkungen zur Logik, Ontologie und Semantik bei Leibniz. Studia Leibnitiana, 6, 4968.Google Scholar
Byrne, L. (1946). Two brief formulations of Boolean algebra. Bulletin of the American Mathematical Society, 52, 269272.CrossRefGoogle Scholar
Castañeda, H.-N. (1974). Leibniz’s concepts and their coincidence salva veritate. Noûs, 8, 381398.CrossRefGoogle Scholar
Castañeda, H.-N. (1976). Leibniz’s syllogistico-propositional calculus. Notre Dame Journal of Formal Logic, 17, 481500.Google Scholar
Castañeda, H.-N. (1990). Leibniz’s complete propositional logic. Topoi, 9, 1528.CrossRefGoogle Scholar
Couturat, L. (1901). La logique de Leibniz. Paris: Félix Alcan.Google Scholar
Cover, J. A., & O’Leary-Hawthorne, J. (1999). Substance and Individuation in Leibniz. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Doull, F. A. (1991). Leibniz’s logical system of 1686–1690. Theoria, 6, 928.Google Scholar
Dutens, L. (1768). Gothofredi Guillelmi Leibnitii opera omnia. Tomus quintus, continens opera philologica. Geneva: Fratres de Tournes.Google Scholar
Goldblatt, R. (2006). Mathematical modal logic: A view of its evolution. In Gabbay, D. M. & Woods, J., editors. Logic and the Modalities in the Twentieth Century. Handbook of the History of Logic, Vol. 7. Amsterdam: Elsevier, pp. 198.CrossRefGoogle Scholar
Hailperin, T. (2004). Algebraical logic 1685–1900. In Gabbay, D. M. & Woods, J., editors. The Rise of Modern Logic: From Leibniz to Frege. Handbook of the History of Logic, Vol. 3. Amsterdam: Elsevier, pp. 323388.CrossRefGoogle Scholar
Halmos, P. R. (1962). Algebraic Logic. New York: Chelsea Publishing Company.Google Scholar
Heinekamp, A. (1976). Sprache und Wirklichkeit nach Leibniz. In Parret, H., editor. History of Linguistic Thought and Contemporary Linguistics. Berlin: de Gruyter, pp. 518570.Google Scholar
Houser, N. (1991). Peirce and the law of distribution. In Drucker, T., editor. Perspectives on the History of Mathematical Logic. Boston: Birkhäuser, pp. 1032.Google Scholar
Huntington, E. V. (1904). Sets of independent postulates for the algebra of logic. Transactions of the American Mathematical Society, 5, 288309.CrossRefGoogle Scholar
Ishiguro, H. (1972). Leibniz’s Philosophy of Logic and Language. Ithaca, NY: Cornell University Press.Google Scholar
Ishiguro, H. (1990). Leibniz’s Philosophy of Logic and Language (second edition). Cambridge: Cambridge University Press.Google Scholar
Juniewicz, M. (1987). Leibniz’s modal calculus of concepts. In Srzednicki, J., editor. Initiatives in Logic. Dordrecht: Kluwer, pp. 3651.CrossRefGoogle Scholar
Kauppi, R. (1960). Über die Leibnizsche Logik: Mit besonderer Berücksichtigung des Problems der Intension und der Extension. Acta Philosophica Fennica, Vol. 12. Helsinki: Societas Philosophica.Google Scholar
Leibniz, G. W. (1857–90). Die philosophischen Schriften von Gottfried Wilhelm Leibniz, 7 vols. Ed. by Gerhardt, C. I.. Berlin: Weidmannsche Buchhandlung.Google Scholar
Leibniz, G. W. (1903). Opuscules et fragments inédits de Leibniz. L. Couturat, editor. Paris: Félix Alcan.Google Scholar
Leibniz, G. W. (1999). Sämtliche Schriften und Briefe, vol. VI4A. Ed. by the Berlin Brandenburgische Akademie der Wissenschaften and the Akademie der Wissenschaften in Göttingen. Berlin: Akademie Verlag.Google Scholar
Lenzen, W. (1983). Zur extensionalen und “intensionalen” Interpretation der Leibnizschen Logik. Studia Leibnitiana, 15, 129148.Google Scholar
Lenzen, W. (1984a). Leibniz und die Boolesche Algebra. Studia Leibnitiana, 16, 187203.Google Scholar
Lenzen, W. (1984b). “Unbestimmte Begriffe” bei Leibniz. Studia Leibnitiana, 16, 126.Google Scholar
Lenzen, W. (1986). ‘Non est’ non est ‘est non’. Zu Leibnizens Theorie der Negation. Studia Leibnitiana, 18, 137.Google Scholar
Lenzen, W. (1987). Leibniz’s calculus of strict implication. In Srzednicki, J., editor. Initiatives in Logic. Dordrecht: Kluwer, pp. 135.Google Scholar
Lenzen, W. (2004). Leibniz’s logic. In Gabbay, D. M. & Woods, J., editors. The Rise of Modern Logic: From Leibniz to Frege. Handbook of the History of Logic, Vol. 3. Amsterdam: Elsevier, pp. 183.CrossRefGoogle Scholar
Lenzen, W. (2005). Leibniz on alethic and deontic modal logic. In Berlioz, D. & Nef, F., editors. Leibniz et les Puissance du Langage. Paris: Vrin, pp. 341362.Google Scholar
Levey, S. (2011). Logical theory in Leibniz. In Look, B. C., editor. The Continuum Companion to Leibniz. New York: Continuum, pp. 110135.Google Scholar
Lewis, C. I. (1918). A Survey of Symbolic Logic. Berkeley: University of California Press.CrossRefGoogle Scholar
Lewis, C. I., & Langford, C. H. (1932). Symbolic Logic. New York: Century.Google Scholar
Mates, B. (1986). The Philosophy of Leibniz: Metaphysics and Language. New York: Oxford University Press.Google Scholar
Mugnai, M. (2005). Review of Wolfgang Lenzen, Calculus Universalis: Studien zur Logik von G. W. Leibniz. The Leibniz Review, 15, 169181.CrossRefGoogle Scholar
Mugnai, M. (2008). Gottfried Wilhelm Leibniz: Ricerche generali sull’analisi delle nozioni e delle verità e altri scritti di logica. Pisa: Edizioni della Normale.Google Scholar
Parkinson, G. H. R. (1965). Logic and Reality in Leibniz’s Metaphysics. Oxford: Clarendon Press.Google Scholar
Parkinson, G. H. R. (1966). Gottfried Wilhelm Leibniz: Logical Papers. A Selection. Oxford: Clarendon Press.Google Scholar
Peckhaus, V. (1997). Logik, Mathesis universalis und allgemeine Wissenschaft. Leibniz und die Wiederentdeckung der formalen Logik im 19. Jahrhundert. Berlin: Akademie Verlag.Google Scholar
Peirce, C. S. (1880). On the algebra of logic. American Journal of Mathematics, 3, 1557.CrossRefGoogle Scholar
Poser, H. (1979). Signum, notio und idea. Elemente der Leibnizschen Zeichentheorie. Zeitschrift für Semiotik, 1, 309324.Google Scholar
Rauzy, J.-B. (1998). G. W Leibniz: Recherches générales sur l’analyse des notions et des vérités, 24 thèses métaphysiques et autres textes logiques et métaphysiques. Paris: PUF.Google Scholar
Rescher, N. (1954). Leibniz’s interpretation of his logical calculi. Journal of Symbolic Logic, 19, 113.CrossRefGoogle Scholar
Rodriguez-Pereyra, G. (2013). The principles of contradiction, sufficient reason, and identity of indiscernibles. In Antognazza, M. R., editor. Oxford Handbooks Online: The Oxford Handbook of Leibniz. Oxford: Oxford University Press.Google Scholar
Rosser, J. B. (1953). Logic for Mathematicians. New York: McGraw-Hill.Google Scholar
Schupp, F. (1993). Gottfried Wilhelm Leibniz: Allgemeine Untersuchungen über die Analyse der Begriffe und Wahrheiten (second edition). Hamburg: Felix Meiner.Google Scholar
Swoyer, C. (1994). Leibniz’s calculus of real addition. Studia Leibnitiana, 26, 130.Google Scholar
Swoyer, C. (1995). Leibniz on intension and extension. Noûs, 29, 96114.CrossRefGoogle Scholar
van Rooij, R. (2014). Leibnizian intensional semantics for syllogistic reasoning. In Ciuni, R., Wansing, H., & Willkommen, C., editors. Recent Trends in Philosophical Logic. Heidelberg: Springer, pp. 179194.CrossRefGoogle Scholar