Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-16T15:14:26.006Z Has data issue: false hasContentIssue false

‘KNOWABLE’ AS ‘KNOWN AFTER AN ANNOUNCEMENT’

Published online by Cambridge University Press:  01 October 2008

PHILIPPE BALBIANI*
Affiliation:
IRIT, Université de Toulouse
ALEXANDRU BALTAG*
Affiliation:
Computer Science Laboratory, Oxford University
HANS VAN DITMARSCH*
Affiliation:
Department of Computer Science, University of Otago and IRIT, Université de Toulouse
ANDREAS HERZIG*
Affiliation:
IRIT, Université de Toulouse
TOMOHIRO HOSHI*
Affiliation:
Philosophy Department, Stanford University
TIAGO DE LIMA*
Affiliation:
Department of Technology Management, Eindhoven University of Technology
*
*CNRS INSTITUT DE RECHERCHE EN INFORMATIQUE DE TOULOUSE UNIVERSITÉ DE TOULOUSE 118 ROUTE DE NARBONNE 31062 TOULOUSE CEDEX 9 FRANCE E-mail:[email protected]
OXFORD UNIVERSITY COMPUTING LABORATORY WOLFSON BUILDING, PARKS ROAD OXFORD OX1 3QD UNITED KINGDOM E-mail:[email protected]
§DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF OTAGO PO BOX 56, DUNEDIN 9054, NEW ZEALAND
SCNRS INSTITUT DE RECHERCHE EN INFORMATIQUE DE TOULOUSE UNIVERSITÉ DE TOULOUSE 118 ROUTE DE NARBONNE 31062 TOULOUSE CEDEX 9 FRANCE E-mail:[email protected]
**PHILOSOPHY DEPARTMENT STANFORD UNIVERSITY STANFORD, CA 94305-2155, USA E-mail:[email protected]
DEPARTMENT OF INDUSTRIAL ENGINEERING AND INNOVATION SCIENCES EINDHOVEN UNIVERSITY OF TECHNOLOGY P.O. BOX 513 5600 MB EINDHOVEN THE NETHERLANDS E-mail:[email protected]

Abstract

Public announcement logic is an extension of multiagent epistemic logic with dynamic operators to model the informational consequences of announcements to the entire group of agents. We propose an extension of public announcement logic with a dynamic modal operator that expresses what is true after any announcement: ⋄φ expresses that there is a truthful announcement ψ after which φ is true. This logic gives a perspective on Fitch's knowability issues: For which formulas φ, does it hold that φ → ⋄? We give various semantic results and show completeness for a Hilbert-style axiomatization of this logic. There is a natural generalization to a logic for arbitrary events.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BIBLIOGRAPHY

Aczel, P. (1988). Non-Well-Founded Sets [CSLI Lecture Notes 14]. Stanford, CA: CSLI Publications.Google Scholar
Ågotnes, T., & van Ditmarsch, H. P. (2008). Coalitions and announcements. In Padgham, L., Parkes, D. C., Müller, J., & Parsons, S. editors, Proceedings of the Seventh International Joint Conference on Autonomous Agents & Multiagent Systems (AAMAS 2008), Estoril, Portugal, May 12-16, 2008, Volume 2, IFAAMAS, 673680.Google Scholar
Balbiani, P., van Ditmarsch, H. P., Herzig, A., & de Lima, T. (2007). A tableau method for public announcement logics. In Olivetti, N., editor. Proceedings of the International Conference on Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX). LNAI 4548. Berlin, Germany: Springer, pp. 4359.CrossRefGoogle Scholar
Baltag, A., Moss, L. S., & Solecki, S. (1998). The logic of public announcements, common knowledge, and private suspicions. In Gilboa, I., editor. Proceedings of the 7th Conference on Theoretical Aspects of Rationality and Knowledge (TARK 98). pp. 4356.Google Scholar
Blackburn, P., de Rijke, M., & Venema, Y. (2001). Modal Logic. Cambridge Tracts in Theoretical Computer Science 53. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Brogaard, B., & Salerno, J. (2004). Fitch's Paradox of Knowability. Available from: http://plato.stanford.edu/archives/sum2004/entries/fitch-paradox/.Google Scholar
Dummett, M. (2001). Victor's error. Synthesis, 61, 12.Google Scholar
Fine, K. (1970). Propositional quantifiers in modal logic. Theoria, 36(3), 336346.Google Scholar
Fitch, F. B. (1963). A logical analysis of some value concepts. The Journal of Symbolic Logic, 28(2), 135142.Google Scholar
French, T., & van Ditmarsch, H. P. (2008). Undecidability for arbitrary public announcement logic. In Areces, C., and Goldblatt, R., editors. Proceedings of Advances in Modal Logic 2008. Nancy, France, September 9-12, 2008. London: College Publications, pp. 2342.Google Scholar
Gerbrandy, J. D. (1999). Bisimulations on Planet Kripke. PhD Thesis. ILLC Dissertation Series DS-1999-01. University of Amsterdam.Google Scholar
Gerbrandy, J. D., & Groeneveld, W. (1997). Reasoning about information change. Journal of Logic, Language, and Information, 6, 147169.CrossRefGoogle Scholar
Goldblatt, R. (1982). Axiomatising the Logic of Computer Programming. Berlin, Germany: Springer-Verlag.Google Scholar
Hintikka, J. Knowledge and Belief. Ithaca, NY: Cornell University Press.Google Scholar
Hoshi, T. (2006). The logic of communication graphs for group communication and the dynamic epistemic logic with a future operator. Philosophy Department, Stanford University.Google Scholar
Hoshi, T. (2008). Logics of public announcements with announcement protocols (manuscript, Philosophy Department, Stanford University).Google Scholar
Meyer, J.-J Ch., & van der Hoek, W. (1995). Epistemic Logic for AI and Computer Science. Cambridge Tracts in Theoretical Computer Science 41. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Miller, J. S., & Moss, L. S. (2005). The undecidability of iterated modal relativization. Studia Logica, 79(3), 373407.CrossRefGoogle Scholar
Moore, G. E. (1942). A reply to my critics. In Schilpp, , P. A., editor. The Philosophy of G.E. Moore. The Library of Living Philosophers, vol. 4. Evanston, IL: Northwestern University, pp. 535677.Google Scholar
Moss, L. S., & Parikh, R. (1992). Topological reasoning and the logic of knowledge. In Moses, Y., editor. TARK ’92: Proceedings of the Fourth Conference on Theoretical Aspects of Reasoning About Knowledge. San Francisco, CA: Morgan Kaufmann Publishers Inc., pp. 95105.Google Scholar
Parikh, R., Moss, L. S., & Steinsvold, C. (2007). Topology and epistemic logic. In Aiello, M., Pratt-Hartmann, I., and van Benthem, J. F. A. K., editors. Handbook of Spatial Logics. Berlin, Germany: Springer-Verlag, pp. 299341.CrossRefGoogle Scholar
Plaza, J. A. (1989). Logics of public communications. In Emrich, M. L., Pfeifer, M. S., Hadzikadic, M., and Ras, Z. W., editors. Proceedings of the 4th International Symposium on Methodologies for Intelligent Systems: Poster Session Program. ORNL/DSRD-24. Oak Ridge National Laboratory, pp. 201216.Google Scholar
Plaza, J. A. (2007). Logics of public communications. Synthese, 158(2), 165179(Reprint of Plaza's 1989 workshop paper).CrossRefGoogle Scholar
Tennant, N. (1997). The Taming of the True. Oxford, UK: Oxford University.Google Scholar
van Benthem, J. F. A. K. (2004). What one may come to know. Analysis, 64(2), 95105.CrossRefGoogle Scholar
van Benthem, J. F. A. K. (2006). One is a lonely number’: on the logic of communication. In Chatzidakis, Z., Koepke, P., and Pohlers, W., editors. Logic Colloquium ’02. Volume 27 of Lecture Notes in Logic. Poughkeepsie, NY: Association for Symbolic Logic, pp. 96129.Google Scholar
van Benthem, J. F. A. K., Gerbrandy, J. D., & Pacuit, E. (2007). Merging frameworks for interaction: DEL and ETL. In Samet, D., editor. Proceedings of TARK 2007. Louvain-la-Neuve, Belgium: Presses Universitaires de Louvain, pp. 4251.Google Scholar
van Ditmarsch, H. P., & Kooi, B. P. (2006). The secret of my success. Synthese, 151, 201232.Google Scholar
van Ditmarsch, H. P., & Kooi, B. P. (2008). Semantic results for ontic and epistemic change. In Bonanno, G., van der Hoek, W., and Wooldridge, M., editors. Post-Proceedings of LOFT 2006. Amsterdam: Amsterdam University Press. To appear in the series Texts in Logic and Games, pp. 87117.Google Scholar
van Ditmarsch, H. P., van der Hoek, W., & Kooi, B. P. (2007). Dynamic Epistemic Logic, volume 337 of Synthese Library. Berlin, Germany: Springer.Google Scholar