Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-20T08:27:39.235Z Has data issue: false hasContentIssue false

COMPLETENESS VIA CORRESPONDENCE FOR EXTENSIONS OF THE LOGIC OF PARADOX

Published online by Cambridge University Press:  30 July 2012

BARTELD KOOI*
Affiliation:
Faculty of Philosophy, University of Groningen
ALLARD TAMMINGA*
Affiliation:
Faculty of Philosophy, University of Groningen, Institute of Philosophy, University of Oldenburg
*
*FACULTY OF PHILOSOPHY, UNIVERSITY OF GRONINGEN, OUDE BOTERINGESTRAAT 52, 9712 GL GRONINGEN, THE NETHERLANDS E-mail: [email protected], [email protected]
INSTITUTE OF PHILOSOPHY, UNIVERSITY OF OLDENBURG, AMMERLÄNDER HEERSTRASSE 114–118, 26129 OLDENBURG, GERMANY E-mail: [email protected]

Abstract

Taking our inspiration from modal correspondence theory, we present the idea of correspondence analysis for many-valued logics. As a benchmark case, we study truth-functional extensions of the Logic of Paradox (LP). First, we characterize each of the possible truth table entries for unary and binary operators that could be added to LP by an inference scheme. Second, we define a class of natural deduction systems on the basis of these characterizing inference schemes and a natural deduction system for LP. Third, we show that each of the resulting natural deduction systems is sound and complete with respect to its particular semantics.

Type
Research Articles
Copyright
Copyright © Association for Symbolic Logic 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BIBLIOGRAPHY

Anderson, A. R., & Belnap, N. D. (1975). Entailment. The Logic of Relevance and Necessity, Vol. 1. Princeton, NJ: Princeton University Press.Google Scholar
Brady, R. T. (1982). Completeness proofs for the systems RM 3 and BN 4. Logique et Analyse, 25, 932.Google Scholar
D’Ottaviano, I. M. L., & da Costa, N. C. A. (1970). Sur un problème de Jaśkowski. Comptes rendus hebdomadaires des séances de l’Académie des sciences, 270A, 13491353.Google Scholar
Epstein, R. L., & D’Ottaviano, I. M. L. (2000). Paraconsistent logic: J 3. In Epstein, R. L. Propositional Logics (second edition), chapter 9. Belmont, CA: Wadsworth Publishing Company.Google Scholar
Priest, G. (1979). The logic of paradox. Journal of Philosophical Logic, 8, 219241.Google Scholar
Sahlqvist, H. (1975). Completeness and correspondence in the first and second order semantics for modal logic. In Kanger, S., editor. Proceedings of the Third Scandinavian Logic Symposium. Amsterdam: North-Holland Publishing Company, pp. 110143.Google Scholar
Troelstra, A. S., & Schwichtenberg, H. (1996). Basic Proof Theory. Cambridge, UK: Cambridge University Press.Google Scholar
van Benthem, J. (1976). Modal correspondence theory. PhD Thesis, Universiteit van Amsterdam, Amsterdam.Google Scholar
van Benthem, J. (2001). Correspondence theory. In Gabbay, D. M., and Guenthner, F., editors. Handbook of Philosophical Logic (second edition), Vol. 3. Dordrecht, The Netherlands: Kluwer Academic Publishers, pp. 325408.Google Scholar