Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-22T11:05:37.588Z Has data issue: false hasContentIssue false

BROUWER’S WEAK COUNTEREXAMPLES AND TESTABILITY: FURTHER REMARKS

Published online by Cambridge University Press:  13 March 2013

CHARLES MCCARTY*
Affiliation:
1408 E, LONGVIEW AVENUE, BLOOMINGTON, IN 47403, USA

Abstract

Straightforwardly and strictly intuitionistic inferences show that the Brouwer– Heyting–Kolmogorov (BHK) interpretation, in the presence of a formulation of the recognition principle, entails the validity of the Law of Testability: that the form ¬ f V ¬¬ f is valid. Therefore, the BHK and recognition, as described here, are inconsistent with the axioms both of intuitionistic mathematics and of Markovian constructivism. This finding also implies that, if the BHK and recognition are suitably formulated, then Brouwer’s original weak counterexample reasoning was fallacious. The results of the present article extend and refine those of McCarty, C. (2012). Antirealism and Constructivism: Brouwer’s Weak Counterexamples. The Review of Symbolic Logic. First View. Cambridge University Press.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BIBLIOGRAPHY

Bridges, D., & Richman, F. (1987). Varieties of Constructive Mathematics. London Mathematical Society Lecture Notes Series, Vol. 97. Cambridge, UK: Cambridge University Press, p. x+148.Google Scholar
Brouwer, L. E. J. (1908). De Onbetrouwbaarheid der Logische Principes. Tijdschrift voor Wijsbegeerte, Vol. 2. Amsterdam, The Netherlands: W. Versluys, pp. 152158 (English translation in [Brouwer 1975], pp. 107–111).Google Scholar
Brouwer, L. E. J. (1975). The unreliability of the logical principles. In Heyting, A., editor. Collected Works, Vol. 1. Amsterdam, The Netherlands: North-Holland Publishing Co., p. xv+628.Google Scholar
Dummett, M. A. E. (1977). Elements of Intuitionism (second edition). Oxford, UK: Clarendon Press.Google Scholar
Dummett, M. A. E. (1978). The philosophical basis of intuitionistic logic. In Truth and Other Enigmas. Cambridge, MA: Harvard University Press, pp. 215247.Google Scholar
Goodman, N. D. (1968). Intuitionistic Arithmetic as a Theory of Constructions. PhD Dissertation. Palo Alto, CA: Stanford University, p. v+111.Google Scholar
Kleene, S. C. (1945). On the interpretation of intuitionistic number theory. Journal of Symbolic Logic, 10, 109124.Google Scholar
Kolmogorov, A. N. (1932). Zur Deutung der intuitionistichen Logik. Mathematische Zeitschrift, 35, 5865.Google Scholar
Kreisel, G. (1962). Foundations of intuitionistic logic. In Nagel, E. et al. ., editors. Logic, Methodology, and Philosophy of Science I. Palo Alto, CA: Stanford University Press, pp. 198210.Google Scholar
McCarty, C. (2012). Antirealism and Constructivism: Brouwer’s Weak Counterexamples. The Review of Symbolic Logic. First View. Cambridge, UK: Cambridge University Press.Google Scholar
Scott, D. S. (1975). Data types as lattices. In Müller, G. H., editors. ISILC Logic Conference: Proceedings of the International Summer Institute and Logic Colloquium, Kiel, 1974. Lecture Notes in Mathematics, Vol. 499. Berlin, DE: Springer-Verlag, pp. 579651.CrossRefGoogle Scholar
Troelstra, A. S. (1971). Notions of realizability for intuitionistic arithmetic and intuitionistic arithmetic in all finite types. In Fenstad, J., editor. The Second Scandinavian Logic Symposium. Amsterdam, The Netherlands: North-Holland Publishing Company, pp. 369405.Google Scholar
Troelstra, A. S., & van Dalen, D. (1988). Constructivism in Mathematics, Vol. I. Amsterdam, The Netherlands: North-Holland, p. xx+342+XIV.Google Scholar