Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-22T18:05:09.926Z Has data issue: false hasContentIssue false

Real convergence in some emerging countries: a fractionally integrated approach

Published online by Cambridge University Press:  17 August 2016

Get access

Summary

This article examines the real convergence hypothesis in eleven emerging countries by means of fractionally integrated techniques. For this purpose, we examine the order of integration of the real GDP per capita series in Argentina, Brazil, Chile, Colombia, Mexico, Peru, Venezuela, India, Indonesia, Taiwan and South Korea as well as their differences with respect to the US and Japan. We find evidence of smaller degrees of integration in the differenced series only for some of the Latin American countries with respect to the US, and for all the Asian countries with respect to both the US and Japan. However, we only find evidence of real convergence for the cases of Argentina and Chile with respect to the US, and Taiwan with respect to Japan, suggesting thus the possibility of different convergence clubs among both Latin American and Asian countries.

Résumé

Résumé

Cet article examine l'hypothèse d'une convergence réelle de onze économies émergentes, en utilisant des techniques fractionnelles intégrées. Pour ce faire, nous examinons l'ordre d'intégration des séries du PIB réel par tête de l'Argentine, du Brésil, du Chili, de la Colombie, du Mexique, du Pérou, du Vénézuela, de l'Inde, de l'Indonésie, de Taïwan et de la Corée du Sud, ainsi que leurs différences par rapport aux États-Unis et au Japon. Nous trouvons des preuves d'un faible degré d'intégration des séries différenciées pour seulement quelques pays d'Amérique latine par rapport aux Etats-Unis, et de tous les pays d'Asie par rapport aux États-Unis et au Japon.

Cependant, nous ne trouvons d'évidence d'une convergence réelle que pour l'Argentine et le Chili par rapport aux États-Unis, et pour Taïwan par rapport au Japon. Ceci suggère la possibilité de groupes de convergences différents parmi les pays d'Amérique latine et d'Asie.

Type
Research Article
Copyright
Copyright © Université catholique de Louvain, Institut de recherches économiques et sociales 2007 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Universidad de Navarra

References

Aghion, P. and Howitt, P. (1992), “A model of growth through creative destruction”, Econometrica, vol. 60, pp. 323351.Google Scholar
Bernard, A.B., (1991), “Empirical Implications of the Convergence Hypothesis”, Working Paper, Center for Economic Policy Research, Stanford University.Google Scholar
Bernard, A.B. and Durlauf, S.N. (1991), “Convergence of international output movements”, NBER, Working Paper 3717.Google Scholar
Bernard, A.B. and Durlauf, S.N. (1995), “Convergence in international output”, Journal of Applied Econometrics, vol. 10, pp. 97108.Google Scholar
Bernard, A.B. and Durlauf, S.N. (1996), “Interpreting tests of the convergence hypothesis”, Journal of Econometrics, vol. 71, pp. 161173.Google Scholar
Bloomfield, P., (1973), “An exponential model in the spectrum of a scalar time series”, Biometrika, 60, pp. 217226.Google Scholar
Campbell, J.Y. and Mankiw, N.G. (1989), “International evidence on the persistence of economic fluctuations”, Journal of Monetary Economics, vol. 23, pp. 319333.Google Scholar
Carlino, G.A. and Mills, L.O. (1993), “Are U.S. regional incomes converging? A time series analysis”, Journal of Monetary Economics, vol. 32, pp. 335346.Google Scholar
Cellini, R. and Scorcu, A., (2000), Segmented Stochastic Convergence Across the G7 Countries, Empirical Economics, 25, pp. 463474.Google Scholar
Cogley, T., (1990), “International evidence on the size of the random walk in output”, Journal of Political Economy, vol. 98, pp. 501518.Google Scholar
Dahlhaus, R., (1989), “Efficient parameter estimation for self-similar process”, Annals of Statistics, vol. 17, pp, 17491766.Google Scholar
De Gregorio, J., (1999), “Economic growth in Latin America: sources and prospects”, Universidad de Chile, Documentos de trabajo 66.Google Scholar
De Gregorio, J. and Lee, J.W. (2003), “Growth and adjustment in East Asia and Latin America”, Central Bank of Chile, Working Papers 245.Google Scholar
Dickey, D.A. and Fuller, W.A. (1979), “Distribution of the estimators for autoregressive time series with a unit root”, Journal of the American Statistical Association, vol. 74, pp. 27431.Google Scholar
Dolado, J.J., Gonzalo, J. and Mayoral, L. (2002), “A fractional Dickey-Fuller tests”, Econometrica, vol. 70, pp. 19732006.Google Scholar
Easterly, W., (1995), “Explaining miracles: Growth regressions meet the gang of four”, in Ito, T. and Krueger, A.O. (eds.), Growth Theories in Light of the East Asian Experience, University of Chicago Press, Chicago, 267290.Google Scholar
Fuller, W.A., (1976), “Introduction to statistical time series”, Wiley, New York, NY.Google Scholar
Geweke, J. and Porter-Hudak, S. (1983), “The estimation and application of long memory time series models”, Journal of Time Series Analysis, vol. 4, pp. 221238.Google Scholar
Gil-Alana, L.A., (2000), “Evaluation of Robinson’s (1994) tests in finite sample”, Journal of Statistical Computation and Simulation, vol. 68, pp. 3954.Google Scholar
Gil-Alana, L.A., (2003), “Testing of fractional cointegration in macroeco-nomic time series”, Oxford Bulletin of Economics and Statistics, vol. 65, pp. 517529.Google Scholar
Hsiao, F.S.T. and Hsiao, M.C.W. (2003), “Miracle growth in the twentieth century-international comparisons of east asian development”, World Development, vol. 31, pp. 227257.Google Scholar
Kwiatkowski, D., Phillips, P.C.B., Schmidt, P., and Shin, Y. (1992), “Testing the null hypothesis of stationarity against the alternative of a unit root”, Journal of Econometrics, vol. 54, pp. 159178.Google Scholar
Lim, L.K. and McAleer, M. (2000), “Convergence and catching up in SouthEast Asia: A comparative Analysis”, Econometric Society World Congress 2000, Contributed Paper 1844.Google Scholar
Loewy, M. and Papell, D. (1996), “Are US regional income converging? Some further evidence”, Journal of Monetary Economics, vol. 38, pp. 587598.Google Scholar
Lucas, R., (1988), “On the mechanics of economic development”, Journal of Monetary Economics, vol. 22, pp. 341.Google Scholar
Maddison, A., (1995), “Monitoring the world economy 1820–1992”, Paris, OECD.Google Scholar
Marinucci, D. and Robinson, P.M. (1999), “Semiparametric fractional cointegration models”, Journal of Statistical Planning and Inference, vol. 80, pp. 111122.Google Scholar
Michelacci, C. and Zaffaroni, P. (2000), “(Fractional) beta convergence”, Journal of Monetary Economics, vol. 45, pp. 129153.Google Scholar
Robinson, P.M., (1994), “Efficient tests of nonstationary hypotheses”, Journal of the American Statistical Association, vol. 89, pp. 14201437.Google Scholar
Robinson, P.M., (1995a), “Gaussian semiparametric estimation of long range dependence”, Annals of Statistics, vol. 23, pp. 16301661.Google Scholar
Robinson, P.M., (1995b), “Log-periodogram regression of time series with long range dependence”, Annals of Statistics, 23, 10481072.Google Scholar
Robinson, P.M. and Hualde, J. (2002), “Root-N consistent estimation of weak fractional cointegration”, Preprint.Google Scholar
Robinson, P.M. and Hualde, J. (2003), “Cointegration in fractional systems with unknown integration orders”, Econometrica, vol. 71, pp. 17271766.Google Scholar
Romer, P., (1986), “Increasing returns and long-run growth”, Journal of Political Economy, vol. 94, pp. 10021037.Google Scholar
Schmidt, P. and Phillips, P.C.B. (1992), “LM tests for a unit root in the presence of deterministic trends”, Oxford Bulletin of Economics and Statistics, vol. 54, pp. 257287.Google Scholar
Silverberg, G. and Verspagen, B. (1999), “Long memory in time series of economic growth and convergence”, Eindhoven Centre for Innovation Studies, Working Paper 99.8.Google Scholar
Solow, R.M., (1956), “A contribution to the theory of economic growth”, Quarterly Journal of Economics, vol. 70, pp. 6594.Google Scholar
Sowell, F., (1992), “Maximum likelihood estimation of stationary univariate fractionally integrated time series models”, Journal of Econometrics, vol. 53, pp. 165188.Google Scholar
Tanaka, K., (1999), “The nonstationary fractional unit root”, Econometric Theory, vol. 15, pp. 549582.Google Scholar
Young, A., (1992), “A tale of two cities: Factor accumulation and technical change in Hong Kong and Singapore”, NBER Macroeconomics Annual, pp. 1354.Google Scholar
Young, A., (1995), “The tyranny of numbers: Confronting the statistical realities of the east Asian growth experience”, Quarterly Journal of Econometrics, vol. 110, pp. 641680.Google Scholar