Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-06T05:21:50.031Z Has data issue: false hasContentIssue false

Optimal Growth and Transfers between Generations

Published online by Cambridge University Press:  17 August 2016

Marc Fleurbaey
Affiliation:
THETIA, Université de Cergy, Pontoise
Philippe Michel
Affiliation:
LEQAM, Aix-en-Provence
Get access

Summary

Given the difficulties of utilitarian and egalitarian social welfare functions in the context of intergenerational equity, an analysis directly based on the potential transfers that can be made between generations is proposed. A consumption path may be rejected if some transfers with infinite returns can be made. It is shown that such potential transfers are unlikely in the short run in ordinary growth models, but that the returns to sacrifice are often unbounded when distant dates are considered, except in some particular cases. These concepts help select acceptable growth paths, and give some insight into the dilemmas of intergenerational justice.

Résumé

Résumé

Étant donné les difficultés associées avec l’utilisation de fonctions de bien être social utilitariste ou égalitariste, dans le contexte de I’équité inter-générationelle, on propose une analyse fondée directement sur les transferts potentiels qui peuvent avoir lieu entre générations. Un chemin de consommation peut être rejeté s’il existe un transfert à rendement infini. On montre que de tels transferts potentiels sont peu probables, dans le court terme, dans les modèles de croissance habituels, mais que les rendements d’un sacrifice présent sont souvent non bornés quand on considère des moments éloignés, excepté dans certains cas particuliers. Ces concepts aident è sélectionner des chemins de croissance acceptables, et donne un nouvel aperçu du dilemme de la justice intergénérationelle.

Keywords

Type
Research Article
Copyright
Copyright © Université catholique de Louvain, Institut de recherches économiques et sociales 1994 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

(*)

The paper was presented at ESEM93, in Uppsala. Comments by three anonymous referees are gratefully acknowledged.

References

REFERENCES

Arrow, K. J. [1962], The Economic Implications of Learning by Doing, Review of Economic Studies, vol. 80, pp. 155173.Google Scholar
Arrow, K. J. [1973], Rawls’s Principle of Just Saving, Swedish Journal of Economics, vol. 75, pp. 323335.Google Scholar
Brock, W. A. [1970], On Existence of Weakly Maximal Programmes in a Multi-sector Economy, Review of Economic Studies, vol. 37, pp. 275280.Google Scholar
Cass, D. [1972], On Capital Accumulation in the Aggregative, Neoclassical Model of Economic Growth: A Complete Characterization, Journal of Economic Theory, vol. 4, pp. 200223.Google Scholar
Harsanyi, J. C. [1975], Can the Maximin Principle Serve as a Basis for Morality? A Critique of John Rawls’s Theory, American Political Science Review, vol. 59, pp. 594606.Google Scholar
Koopmans, T. C. [1965], On the Concept of Optimal Economic Growth, in The Econometric Approach to Development Planning, Pontificiae Academiae Scientiarum Scripta Varia, vol. 28, pp. 225287.Google Scholar
Michel, P. [1991], Economic Growth from a Normative Point of View: Historical Background and New Considerations, mimeo.Google Scholar
Phelps, E. S. [1965], Second Essay on the Golden Rule of Accumulation, American Economic Review, vol. 55 (Sept.), pp. 793814.Google Scholar
Ramsey, F. P. [1928], A Mathematical Theory of Savings, Economic Journal, vol. 38, pp. 543559.Google Scholar
Rawls, J. [1971], A Theory of Justice, Cambridge, Harvard University Press.Google Scholar
Romer, P. [1986], Increasing Returns and Long-Run Growth, Journal of Political Economy vol. 94, pp. 10021037.Google Scholar
Romer, P. [1989], Capital Accumulation in the Theory of Long-Run Growth, in Barro, R. (ed.), Modern Business Cycle Theory, Oxford, Basil Blackwell, pp. 51127.Google Scholar
von Weizsäucker, C. C. [1965], Existence of Optimal Programs of Accumulation for an Infinite Time Horizon, Review of Economic Studies, vol.32, pp. 85104.Google Scholar