Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T11:26:07.726Z Has data issue: false hasContentIssue false

Fil du rasoir et chocs sur les rendements d’échelle

Published online by Cambridge University Press:  17 August 2016

Jérôme Glachant*
Affiliation:
Université d’Evry et M.A.D., Université de Paris I
Get access

Résumé

Le sentier de croissance à taux constant ‘endogène’ peut àtre vu comme un nouveau fil du rasoir. Son existence repose sur la stricte égalité à un des rendements d’échelle vis-á-vis des facteurs accumulables. Nous étendons cette constatation en étudiant le sentier de croissance d’une économie où les rendements d’échelle, unitaires en espérance, sont soumis à des chocs stochastiques. La propriété de croissance ne résiste pas à l’introduction de ces chocs: le processus stochastique suivi par le stock de capital est stationnaire au sens fort. Cependant, l’économie ne converge pas pour autant vers un état stationnaire stable: la distribution limite du capital n’admet pas d’esperance. Nous commentons ensuite ces résultats pour en tirer quelques enseignements généraux.

Summary

Summary

In endogenous growth model, the balanced growth path can be seen as a new razor edge. Its existence requires that returns to scale with respect to accumulated factors equal exactly one. We propose to extend this result by studying an economy in which returns to scale—unitary on average—are disturbed by stochastic shocks. Growth is not robust: the stochastic process describing capital dynamics is stationary in a strong sense. However, the asymptotic distribution is singular, it does not admit first and second-order moments.

Keywords

Type
Research Article
Copyright
Copyright © Université catholique de Louvain, Institut de recherches économiques et sociales 1994 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

(*)

Je remercie deux rapporteurs anonymes pour leurs suggestions. Les erreurs ou omissions subsistantes sont miennes.

References

REFERENCES

Arrow, K.J. [1962], The Economic Implications of Learning-by-doing, Review of Economic Studies, vol. 29, n° 3, pp. 155173.Google Scholar
Barro, R.J. et Sala-I-Martin, X. [1992], Public Finance in Models of Economic Growth, Review of Economic Studies, vol. 59, n° 201, pp. 645661.Google Scholar
Blough, S. [1990], Unit Roots, Stationarity and Persistence in Finite Sample Macroeconometrics, Working Paper 241, the John Hopkins University.Google Scholar
Brandt, A., Franken, P. et Lisek, B. [1990], Stationary Stochastic Models, Berlin-New York, Akademie Verlag - John Wiley and sons.Google Scholar
Brock, W.A. et Mirman, L. J. [1972], Optimal Economic Growth and Uncertainty: The Discounted Case » Journal of Economic Theory, vol. 4, pp. 479513.Google Scholar
Chamley, C. [1992], The Welfare Cost of Taxation and Endogenous Growth: Anything New?, mimeo, Boston University.Google Scholar
Cochrane, J. [1991], A Critique of the Application of Unit Root Tests, Journal of Economic Dynamics and Control, vol. 15, pp. 275284.Google Scholar
Hercowitz, Z. et Sampson, M. [1991], Output Growth, the Real Wage, and Employment Fluctuations, American Economic Review, vol. 81, n° 5, pp. 12151237.Google Scholar
Kelly, M. [1992], On Endogenous Growth with Productivity Shocks, Journal of Monetary Economics, vol. 30, n° 1, pp. 4756.Google Scholar
King, R.G. et Rebelo, S. [1991], Public Policy and Economic Growth: Developing Neoclassical Implications, Journal of Political Economy, vol. 98, n° 5, S126S150.Google Scholar
Lucas, R.E. [1988], On the Mechanics of Economic Development, Journal of Monetary Economics, vol. 22, n° 1, pp. 342.Google Scholar
McCallum, B.T. [1993], Macroeconomics After Two Decades of Rational Expectations, N.B.E.R. Working Paper, # 4367.Google Scholar
Nelson, D.B. [1990], Stationarity and Persistence in the GARCH(1,1) Model, Econometric Theory, vol. 6, pp. 318334.Google Scholar
Quinn, B.G. [1982], A Note on the Existence of Strictly Stationary Solutions to Bilinear Equations, Journal of Time Series Analysis, vol. 3, n° 4, pp. 249252.Google Scholar
Romer, P.M. [1986], Increasing Returns and Long-Run Growth, Journal of Political Economy, vol. 94, n° 5, pp. 10021036.Google Scholar
Stiglitz, J.E. [1990], Comments: Some Retrospective Views on Growth, in Diamond, P. (ed.), Growth, Productivity, Unemployment, Cambridge, MIT Press.Google Scholar
Storey, N.L. et Lucas, R.E. [1989], Recursive Methods in Economic Dynamics, Cambridge, Harvard U. Press.Google Scholar
Young, A. [1991], Learning by Doing and the Dynamic Effects of International Trade, Quarterly Journal of Economics, vol. 106, pp. 369406.Google Scholar