Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T01:21:22.532Z Has data issue: false hasContentIssue false

Forecasting Bank Failure: A Non-Parametric Frontier Estimation Approach

Published online by Cambridge University Press:  17 August 2016

Richard S. Barr
Affiliation:
Southern Methodist University
Lawrence M. Seiford
Affiliation:
University of Massachusetts
Thomas F. Siems
Affiliation:
Federal Reserve Bank of Dallas
Get access

Summary

The dramatic rise in bank failures over the last decade has led to a search for leading indicators so that costly bailouts might be avoided. While the quality of a bank’s management is generally acknowledged to be a key contributor to institutional collapse, it is usually excluded from early-warning models for lack of a metric. This paper describes a new approach for quantifying a bank’s managerial efficiency, using a data-envelopment-analysis model that combines multiple inputs and outputs to compute a scalar measure of efficiency. This new metric captures an elusive, yet crucial, element of institutional success: management quality. New failure-prediction models for detecting a bank’s troubled status which incorporate this explanatory variable have proven to be robust and accurate, as verified by in-depth empirical evaluations, cost sensitivity analyses, and comparisons with other published approaches.

Résumé

Résumé

La très forte augmentation de faillites bancaires au cours de la dernière décennie a mené à la recherche d’indicateurs qui permettraient de prévenir (et éviter) des renflouages coûteux. Alors que la qualité de la gestion des banques est généralement admise comme un facteur clé de ces faillites, elle est le plus souvent exclue des modèles de dépistage précoce par manque de moyens de mesure. Cet article décrit une nouvelle approche permettant de quantifier l’efficacité de la gestion bancaire. Elle utilise un modèle d’analyse dit D.E.A. combinant plusieurs inputs et outputs et fournissant une mesure scalaire de l’efficacité. Cette nouvelle mesure rend compte de cet élément insaisissable, bien que crucial, du succès : la qualité de la gestion. De nouveaux modèles de prédiction de faillites, incorporant cette variable explicative, se sont avérés robustes et précis, comme l’ont montré des analyses et des comparaissons approfondies avec d’autres approches publiées antérieurement.

Type
Research Article
Copyright
Copyright © Université catholique de Louvain, Institut de recherches économiques et sociales 1994 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

(*)

This work was supported in part by National Science Foundation grant DDM-9313346 and the Federal Reserve Bank of Dallas. The opinions expressed herein are those of the authors and do not necessarily reflect those of the National Science Foundation, the Federal Reserve Bank of Dallas, or the Federal Reserve System. The present paper was originally presented at the Third European Workshop on Efficiency and Productivity Measurement, held at CORE, Louvain-La-Neuve, Belgium, October, 1993.

References

REFERENCES

Ali, I. and Seiford, L.M. [1993], The Mathematical Programming Approach to Efficiency Measurement, in Fried, H., Lovell, K., and Schmidt, S. (eds.), The Measurement of Productive Efficiency: Techniques and Applications, Oxford, Oxford University Press.Google Scholar
Barr, R.S., Seiford, L.M, and Siems, T.F. [1993], An Envelopment-Analysis Approach to Measuring the Management Quality of Banks, Annals of Operations Research, vol. 45, pp. 119.Google Scholar
Barr, R.S., and Siems, T.F. [1992], Predicting Bank Failure Using DEA to Quantify Management Quality, Technical Report 92-CSE-36, Department of Computer Science and Engineering, Southern Methodist University, Dallas, TX.Google Scholar
Beaver, W.H. [1966], Financial Ratios as Predictors of Failure, in The Institute of Professional Accounting (ed.), Empirical Research in Accounting: Selected Studies, Chicago, University of Chicago, pp. 71127.Google Scholar
Bovenzi, J.F., Marino, J.A., and Mcfadden, T.E. [1983], Commercial Bank Failure Prediction Models, Economic Review, vol. 68, pp. 1426.Google Scholar
Charnes, A. Cooper, W.W., Lewin, A.Y. and Seiford, L. [1995] Data Envelopment Analysis: Theory, Methodology and Applications, Boston, Kluwer Academic Publishers.Google Scholar
Charnes, A. Cooper, W.W, and Rhodes, E. [1978], Measuring the Efficiency of Decision Making Units, European Journal of Operational Research, 2(6), pp. 429444.Google Scholar
Hanweck, G.A. [1977], Predicting Bank Failure, Research Paper in Banking and Financial Economics, Financial Studies Section, Division of Research and Statistics, Board of Governors of the Federal Reserve System, November. Google Scholar
Martin, D. [1977], Early Warning of Bank Failure: A Logit Regression Approach, Journal of Banking and Finance, vol. 1, pp. 249276.Google Scholar
Meyer, P.A., and Pifer, H.W. [1970], Prediction of Bank Failures, The Journal of Finance, vol. 25, pp. 853868.Google Scholar
Pantalone, C.C. and Platt, M.B. [1987], Predicting Commercial Bank Failure Since Deregulation, New England Economic Review, Jul/Aug, pp. 3-7-47.Google Scholar
Seballos, L.D., and Thomson, J.B. [1990], Understanding Causes of Commercial Bank Failures in the 1980s, Economic Commentary, Federal Reserve Board of Cleveland, September.Google Scholar
Secrist, H. [1938], National Bank Failures and Non-Failures: An Autopsy and Diagnosis, Bloomington, IN, Principia Press.Google Scholar
Seiford, L.M. [1995], A Data Envelopment Analysis Bibliography (1978-1992), in Charnes, A., Cooper, W.W., Lewin, A.Y. and Seiford, L. (eds.), Data Envelopment Analysis: Theory, Methodology and Applications, Boston, Kluwer Academic Publishers.Google Scholar
Seiford, L.M. and Thrall, R.M. [1990], Recent Developments in DEA: The Mathematical Programming Approach to Frontier Analysis, Journal of Econometrics, 46(1/2), pp. 738.Google Scholar
Siems, T. F. [1991], An Envelopment-Analysis Approach to Measuring Management Quality and Predicting Failure of Banks, Ph.D. Dissertation, Southern Methodist University.Google Scholar
Sinkey, J.F. Jr. [1975], A Multivariate Statistical Analysis of the Characteristics of Problem Banks, The Journal of Finance, 30(1), pp. 2136.Google Scholar
Sinkey, J.F. Jr. [1977], Identifying Large Problem/Failed Banks: Case of Franklin National Bank of New York, Journal of Financial and Quantitative Analysis, 12(5), pp. 779800.Google Scholar
Sinkey, J.F. Jr. [1978], Identifying Problem Banks: How Do Banking Authorities Measure a Bank’s Risk Exposure? Journal of Money, Credit and Banking, 10(2) pp. 184193.Google Scholar
West, R.C.[1985], A Factor-Analytic Approach to Bank Condition, Journal of Banking and Finance, 9(2), pp.253266.Google Scholar