Article contents
A note on dual approximation algorithms for class constrained bin packing problems
Published online by Cambridge University Press: 21 October 2008
Abstract
In this paper we present a dual approximation scheme for the class constrained shelf bin packing problem. In this problem, we are given bins of capacity 1, and n items of Q different classes, each item e with class ce and size se. The problem is to pack the items into bins, such that two items of different classes packed in a same bin must be in different shelves. Items in a same shelf are packed consecutively. Moreover, items in consecutive shelves must be separated by shelf divisors of size d. In a shelf bin packing problem, we have to obtain a shelf packing such that the total size of items and shelf divisors in any bin is at most 1. A dual approximation scheme must obtain a shelf packing of all items into N bins, such that, the total size of all items and shelf divisors packed in any bin is at most 1 + ε for a given ε > 0 and N is the number of bins used in an optimum shelf bin packing problem. Shelf divisors are used to avoid contact between items of different classes and can hold a set of items until a maximum given weight. We also present a dual approximation scheme for the class constrained bin packing problem. In this problem, there is no use of shelf divisors, but each bin uses at most C different classes.
Keywords
- Type
- Research Article
- Information
- Copyright
- © EDP Sciences, 2008
References
- 2
- Cited by