No CrossRef data available.
Published online by Cambridge University Press: 15 April 2002
Schöning [14] introduced a notion of helping and suggested the study of the class ${\rm P}_{\rm help}({\cal C})$ of the languages that can be helped by oracles in a given class ${\cal C}$. Later, Ko [12], in order to study the connections between helping and "witness searching" , introduced the notion of self-helping for languages. We extend this notion to classes of languages and show that there exists a self-helping class that we call SH which contains all the self-helping classes. We introduce the Helping hierarchy whose levels are obtained applying a constant number of times the operator ${\rm P}_{\rm help}(\cdot)$ to the set of all the languages. We show that the Helping hierarchy collapses to the k-th level if and only if SH is equal to the k-th level. We give characterizations of all the levels and use these to construct a relativized world in which the Helping hierarchy is infinite.