Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T18:15:20.898Z Has data issue: false hasContentIssue false

Factoring and testing primes in small space

Published online by Cambridge University Press:  30 July 2013

Viliam Geffert
Affiliation:
Department of Computer Science, P. J. Šafárik University, Jesenná 5, 04001 Košice, Slovakia.. [email protected]
Dana Pardubská
Affiliation:
Department of Computer Science, Comenius University, Mlynská dolina, 84248 Bratislava, Slovakia.; [email protected]
Get access

Abstract

We discuss how much space is sufficient to decide whether a unary given numbern is a prime. We show thatO(log log n) space is sufficient for a deterministicTuring machine, if it is equipped with an additional pebble movable along the input tape,and also for an alternating machine, if the space restriction applies only to itsaccepting computation subtrees. In other words, the language is a prime is inpebble–DSPACE(log log n) and also inaccept–ASPACE(log log n). Moreover, if the givenn is composite, such machines are able to find a divisor ofn. Since O(log log n) space is toosmall to write down a divisor, which might requireΩ(log n) bits, the witness divisor is indicated by theinput head position at the moment when the machine halts.

Type
Research Article
Copyright
© EDP Sciences 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrawal, M., Kayal, N. and Saxena, N., Primes is in P. Ann. Math. 160 (2004) 78193. Google Scholar
Allender, E., The division breakthroughs. Bull. Eur. Assoc. Theoret. Comput. Sci. 74 (2001) 6177. Google Scholar
E. Allender, D.A. Mix Barrington and W. Hesse, Uniform circuits for division: Consequences and problems, in Proc. of IEEE Conf. Comput. Complexity (2001) 150–59.
A. Bertoni, C. Mereghetti and G. Pighizzini, Strong optimal lower bounds for Turing machines that accept nonregular languages, in Proc. of Math. Found. Comput. Sci., Lect. Notes Comput. Sci., vol. 969. Springer-Verlag (1995) 309–18.
C. Boyer, A History of Mathematics. John Wiley & Sons (1968).
Chandra, A. K., Kozen, D. C. and Stockmeyer, L. J.. Alternation. J. Assoc. Comput. Mach. 28 (1981) 11433. Google Scholar
Chang, J.H., Ibarra, O. H., Palis, M.A. and Ravikumar, B., On pebble automata. Theoret. Comput. Sci. 44 (1986) 11121. Google Scholar
Chang, R., Hartmanis, J. and Ranjan, D.. Space bounded computations: Review and new separation results. Theoret. Comput. Sci. 80 (1991) 289302. Google Scholar
A. Chiu, Complexity of Parallel Arithmetic Using The Chinese Remainder Representation. Master’s thesis, University Wisconsin-Milwaukee (1995). (G. Davida, supervisor).
Chiu, A., Davida, G. and Litow, B., Division in logspace-uniform N C 1. RAIRO: ITA 35 (2001) 25975. Google Scholar
Davida, G.I. and Litow, B., Fast parallel arithmetic via modular representation. SIAM J. Comput. 20 (1991) 75665. Google Scholar
Dietz, P.F., Macarie, I.I. and Seiferas, J.I., Bits and relative order from residues, space efficiently. Inform. Process. Lett. 50 (1994) 12327. Google Scholar
W. Ellison and F. Ellison, Prime Numbers. John Wiley & Sons (1985).
Geffert, V., Nondeterministic computations in sublogarithmic space and space constructibility. SIAM J. Comput. 20 (1991) 48498. Google Scholar
Geffert, V., Mereghetti, C. and Pighizzini, G., Sublogarithmic bounds on space and reversals. SIAM J. Comput. 28 (1999) 32540. Google Scholar
V. Geffert and D. Pardubská, Unary coded NP-complete languages in ASPACE(log log n), in Proc. of Develop. Lang. Theory, Lect. Notes Comput. Sci., vol. 7410. Springer-Verlag (2012) 166–77.
Iwama, K., ASPACE(o(log log n)) is regular. SIAM J. Comput. 22 (1993) 13646. Google Scholar
N. Koblitz, A Course in Number Theory and Cryptography, Graduate Texts in Math., vol. 114. Springer-Verlag (1994).
I. I. Macarie, Space-efficient deterministic simulation of probabilistic automata, in Proc. of Symp. Theoret. Aspects Comput. Sci., Lect. Notes Comput. Sci., vol. 775. Springer-Verlag (1994) 109–22.
C. Mereghetti, The descriptional power of sublogarithmic resource bounded Turing machines. In Proc. of Descr. Compl. Formal Syst. IFIP (2007) 12–26. (To appear in J. Automat. Lang. Combin).
P. Shor, Algorithms for quantum computation: Discrete logarithms and factoring, in Proc. of IEEE Symp. Found. Comput. Sci. (1994) 124–34.
A. Szepietowski, Turing Machines with Sublogarithmic Space, Lect. Notes Comput. Sci., vol. 843. Springer-Verlag (1994).