Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-13T02:36:35.206Z Has data issue: false hasContentIssue false

One-Rule Length-Preserving Rewrite Systems and RationalTransductions

Published online by Cambridge University Press:  21 January 2014

Michel Latteux
Affiliation:
Laboratoire d’Informatique Fondamentale de Lille, Université Lille 1, France.. [email protected]
Yves Roos
Affiliation:
Laboratoire d’Informatique Fondamentale de Lille, Université Lille 1, France.. [email protected]
Get access

Abstract

We address the problem to know whether the relation induced by a one-rulelength-preserving rewrite system is rational. We partially answer to a conjecture of ÉricLilin who conjectured in 1991 that a one-rule length-preserving rewrite system is arational transduction if and only if the left-hand side u and theright-hand side v of the rule of the system are not quasi-conjugate orare equal, that means if u and v are distinct, there donot exist words x, y and z such thatu = xyz and v = zyx.We prove the only if part of this conjecture and identify two non trivialcases where the if part is satisfied.

Type
Research Article
Copyright
© EDP Sciences 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

J. Berstel, Transductions and Context-Free Languages. Teubner Verlag (1979).
M. Clerbout and Y. Roos, Semi-commutations and algebraic languages, in STACS 90, in vol. 415, edited by Christian Choffrut and Thomas Lengauer. Lect. Notes Comput. Sci. Springer Berlin/Heidelberg (1990) 82–94.
N. Dershowitz, Open. closed. open, in vol. 3467 of Lect. Notes Comput. Sci. RTA, edited by J. Giesl. Springer (2005) 376–393.
S. Eilenberg and B. Tilson, Automata, languages and machines, vol. B, Pure Appl. Math. Academic Press, New York, San Francisco, London (1976).
A. Geser, Termination of string rewriting rules that have one pair of overlaps, in vol. 2706, Lect. Notes Comput. Sci. RTA, edited by R. Nieuwenhuis. Springer (2003) 410–423.
Geser, A., Hofbauer, D., and Waldmann, J., Match-bounded string rewriting systems. Appl. Algebra Eng. Commun. Comput. 15 (2004) 149171. Google Scholar
W. Kurth, Termination und Konfluenz von Semi–Thue–Systemen mit nur einer Regel. Ph.D. thesis, Technische Universitt Clausthal (1990).
M. Latteux and Y. Roos, The image of a word by a one-rule semi-Thue system is not always context-free (2011). http://www.lifl.fr/ỹroos/al/one-rule-context-free.pdf.
É. Lilin, Une généralisation des semi-commutations. Technical Report IT-210, Laboratoire d’Informatique Fondamentale de Lille, Université de Lille 1, France (1991). In french.
Métivier, Y., Calcul de longueurs de chaînes de reé´criture dans le monoïde libre. Theor. Comput. Sci. 35 (1985) 7187. Google Scholar
R. Milner, The spectra of words, in vol. 3838 of Processes, Terms and Cycles: Steps on the Road to Infinity, edited by A. Middeldorp, V. van Oostrom, F. van Raamsdonk and R. de Vrijer. Lect. Notes Comput. Sci. Springer Berlin/Heidelberg (2005) 1–5.
Ravikumar, B., Peg-solitaire, string rewriting systems and finite automata. Theor. Comput. Sci. 321 (2004) 383394. Google Scholar
J. Sakarovitch, Elements of Automata Theory. Cambridge University Press, New York, USA (2009).
J. Sakarovitch and I. Simon, Subwords. In Combinatorics on words. Cambridge Mathematical Library. Cambridge University Press (1997) 105–142.
Terlutte, A. and Simplot, D., Iteration of rational transductions. RAIRO: ITA 34 (2000) 99130. Google Scholar
C. Wrathall, Confluence of one-rule thue systems, Word Equations and Related Topics, in vol. 572 of Lect. Notes Comput. Sci., edited by K. Schulz. Springer Berlin/Heidelberg (1992) 237–246.