No CrossRef data available.
Article contents
On multiplicatively dependent linear numeration systems, and periodic points
Published online by Cambridge University Press: 15 December 2002
Abstract
Two linear numeration systems, with characteristic polynomial equal to the minimal polynomial of two Pisot numbers β and γ respectively, such that β and γ are multiplicatively dependent, are considered. It is shown that the conversion between one system and the other one is computable by a finite automaton. We also define a sequence of integers which is equal to the number of periodic points of a sofic dynamical system associated with some Parry number.
- Type
- Research Article
- Information
- Copyright
- © EDP Sciences, 2002
References
M.-J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse and J.-P. Schreiber, Pisot and Salem numbers. Birkhäuser (1992).
Bertrand, A., Développements en base de Pisot et répartition modulo 1.
C. R. Acad. Sci. Paris
285 (1977) 419-421.
Bertrand-Mathis, A., Comment écrire les nombres entiers dans une base qui n'est pas entière.
Acta Math. Acad. Sci. Hungar.
54 (1989) 237-241.
CrossRef
Büchi, J.R., Weak second-order arithmetic and finite automata.
Z. Math. Logik Grundlagen Math.
6 (1960) 66-92.
CrossRef
Bruyère, V. and Hansel, G., Bertrand numeration systems and recognizability.
Theoret. Comput. Sci.
181 (1997) 17-43.
CrossRef
Cobham, A., On the base-dependence of sets of numbers recognizable by finite automata.
Math. Systems Theory
3 (1969) 186-192.
CrossRef
Durand, F., A generalization of Cobham's Theorem.
Theory Comput. Systems
31 (1998) 169-185.
CrossRef
S. Eilenberg, Automata, Languages and Machines, Vol. A. Academic Press (1974).
Fabre, S., Une généralisation du théorème de Cobham.
Acta Arithm.
67 (1994) 197-208.
Frougny, Ch., Representation of numbers and finite automata.
Math. Systems Theory
25 (1992) 37-60.
CrossRef
Frougny, Ch., Conversion between two multiplicatively dependent linear numeration systems, in Proc. of LATIN 02. Springer-Verlag,
Lectures Notes in Comput. Sci.
2286 (2002) 64-75.
CrossRef
Ch. Frougny, J. Sakarovitch, Automatic conversion from Fibonacci representation to representation in base φ, and a generalization.
Internat. J. Algebra Comput.
9 (1999) 351-384.
CrossRef
Ch. Frougny, B.
Solomyak, On Representation of Integers in Linear Numeration Systems, in Ergodic theory of
Z
d
-Actions, edited by M. Pollicott and K. Schmidt. Cambridge University Press,
London Math. Soc. Lecture Note Ser.
228 (1996) 345-368.
Ch. Frougny, B.
Solomyak, On the context-freeness of the θ-expansions of the integers.
Internat. J. Algebra Comput.
9 (1999) 347-350.
CrossRef
Hansel, G., Systèmes de numération indépendants et syndéticité.
Theoret. Comput. Sci.
204 (1998) 119-130.
CrossRef
Hollander, M., Greedy numeration systems and regularity.
Theory Comput. Systems
31 (1998) 111-133.
CrossRef
D. Lind and B. Marcus, An Introduction to Symbolic Dynamics. Cambridge University Press (1995).
M. Lothaire, Algebraic Combinatorics on Words. Cambridge University Press (2002).
Parry, W., On the β-expansions of real numbers.
Acta Math. Acad. Sci. Hungar.
11 (1960) 401-416.
CrossRef
Puri, Y. and Ward, T., A dynamical property unique to the Lucas sequence.
Fibonacci Quartely
39 (2001) 398-402.
Y. Puri and T. Ward, Arithmetic and growth of periodic orbits. J. Integer Sequences
4 (2001), Article 01.2.1.
Rényi, A., Representations for real numbers and their ergodic properties.
Acta Math. Acad. Sci. Hungar.
8 (1957) 477-493.
CrossRef
Semënov, A.L., The Presburger nature of predicates that are regular in two number systems.
Siberian Math. J.
18 (1977) 289-299.
CrossRef
Shallit, J., Numeration systems, linear recurrences, and regular sets.
Inform. Comput.
113 (1994) 331-347.
CrossRef