Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T05:54:16.607Z Has data issue: false hasContentIssue false

Maximal circular codes versus maximal codes

Published online by Cambridge University Press:  15 April 2002

Yannick Guesnet*
Affiliation:
LIFAR, Université de Rouen, Place Émile Blondel, 76821 Mont-Saint-Aignan, France; ([email protected])
Get access

Abstract

We answer to a question of De Luca and Restivo whether there exists a circular code which is maximal as circular code and not as code.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

J. Berstel and D. Perrin, Theory of Codes. Academic Press (1985).
V. Bruyère, Codes, Dissertation présentée pour l'obtention de grade légal de docteur en sciences. Université de Mons-Hainaut (1991).
Bruyère, V., On maximal codes with bounded synchronization delay. Theoret. Comput. Sci. , 204 (1998) 11-28. CrossRef
de Luca, A. and Restivo, A., On some properties of very pure codes. Theoret. Comput. Sci. , 10 (1980) 157-170. CrossRef
Guesnet, Y., On codes with finite interpreting delay: A defect theorem. Theoret. Informatics Appl. , 34 (2000) 47-59. CrossRef
Y. Guesnet, Codes et interprétations, Thèse de doctorat. Université de Rouen (2001).
Y. Guesnet, On maximal codes with finite interpreting delay. Theoret. Comput. Sci., (to appear).
M.P. Schützenberger, Une théorie algébrique du codage, in: Séminaire Dubreil-Pisot 1955-56 Institut H. Poincaré (1956), Exposé n°15.