Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T02:53:27.595Z Has data issue: false hasContentIssue false

A Polynomial-time Interior-point Algorithm for Convex QuadraticSemidefinite Optimization

Published online by Cambridge University Press:  25 October 2010

Y. Q. Bai
Affiliation:
Department of Mathematics, Shanghai University, Shanghai, 200444, P.R. China. [email protected]
F. Y. Wang
Affiliation:
Department of Mathematics, Shanghai University, Shanghai, 200444, P.R. China. [email protected]
X. W. Luo
Affiliation:
Department of Mathematics, Shanghai University, Shanghai, 200444, P.R. China. [email protected]
Get access

Abstract

In this paper we propose a primal-dual interior-point algorithm forconvex quadratic semidefinite optimization problem. The searchdirection of algorithm is defined in terms of a matrix function andthe iteration is generated by full-Newton step. Furthermore, wederive the iteration bound for the algorithm with small-updatemethod, namely, O( $\sqrt{n}$ log $\frac{n}{\varepsilon}$ ), which isbest-known bound so far.

Type
Research Article
Copyright
© EDP Sciences, ROADEF, SMAI, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achache, M., A new primal-dual path-following method for convex quadratic programming. Comput. Appl. Math. 25 (2006) 97110. CrossRef
I. Adler and F. Alizadeh, Primal-dual interior point algorithms for convex quadratically constrained and semidefinite optimization problems. Technical Report RRR-111-95, Rutger Center for Operations Research, Brunswick, NJ (1995).
Alfakih, A.Y., Khandani, A. and Wolkowicz, H., Solving Euclidean distance matrix completion problems via semidefinite programming. Comp. Optim. Appl. 12 (1999) 13C30. CrossRef
Bai, Y.Q. and Wang, G.Q., A new primal-dual interior-point algorithm for second-order cone optimization based on kernel function. Acta Math. Sinica (English Series) 23 (2007) 20272042. CrossRef
Bai, Y.Q., Roos, C. and Ghami, M.El., A comparative study of kernel functions for primal-dual interior-point algorithms in linear optimization. SIAM J. Optim. 15 (2004) 101128. CrossRef
Darvay, Z., New interior-point algorithms in linear optimization. Adv. Model. Optim. 5 (2003) 5192.
R.A. Horn and R.J. Charles, Topics in Matrix Analysis. Cambridge University Press, UK (1991).
R.A. Horn and C.R. Johnson, Matrix analysis. Cambridge University Press (1990).
E. de Klerk, Aspects of Semidefinite Programming: Interior Point Algorithms and Selected Applications. Kluwer Academic Publishers, Dordrecht, The Netherlands (2002).
Kojima, M., Shida, M. and Shindoh, S., Reduction of Monotone Linear Complemen-tarity Problems over Cones to Linear Programs over Cones. Acta Mathematica Vietnamica 22 (1997) 147157.
Kojima, M., Shindoh, S. and Hara, S., Interior-point methods for the monotone linear complementarity problem in symmetric matrices. SIAM J. Optim. 7 (1997) 86125. CrossRef
Nesterov, Y.E. and Todd, M.J., Primal-dual interior-point methods for self-scaled cones. SIAM J. Optim. 8 (1998) 324364. CrossRef
Nie, J.W. and Yuan, Y.X., Potential Reduction Al, Agorithm for an Extended SDP. Science In China (Series A) 43 (2000) 3546. CrossRef
Nie, J.W. and Yuan, Y.X., Predictor-Corrector Al, Agorithm for QSDP Combining and Newton Centering Steps. Ann. Oper. Res. 103 (2001) 115133. CrossRef
Toh, K.C., Inexact Primal-Dual Path-Following Algorithms for a Convex Quadratic SDP. Math. Program. 112 (2008) 221254. CrossRef
Toh, K.C., Tütüncü, R.H. and Todd, M.J., Inexact primal-dual path-following algorithms for a special class of convex quadratic SDP and related problems. Pac. J. Optim. 3 (2007) 135164.
Peng, J., Roos, C. and Terlaky, T., Self-regular functions and new search directions for linear and semidefinite optimization. Math. Program. 93 (2002) 129171. CrossRef
Wang, G.Q. and Bai, Y.Q., A new primal-dual path-following interior-point algorithm for semidefinite optimization. J. Math. Anal. Appl. 353 (2009) 339349. CrossRef
Wang, G.Q. and Bai, Y.Q., Primal-dual interior point algorithm for convex quadratic semi-definite optimization. Nonlinear Anal. 71 (2009) 33893402. CrossRef
Wang, G.Q., Bai, Y.Q. and Roos, C., Primal-dual interior-point algorithms for semidefinite optimization based on a simple kernel function. J. Math. Model. Algorithms 4 (2005) 409433. CrossRef
H. Wolkowicz, R. Saigal and L. Vandenberghe, Handbook of Semidefinite Programming, Theory, Algorithms, and Applications. Kluwer Academic Publishers, Dordrecht, The Netherlands (2000).
Zhang, Y., On extending some primal-dual interior-point algorithms from linear programming to semidefinite programming. SIAM J. Optim. 8 (1998) 365386. CrossRef