Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-09T04:30:54.787Z Has data issue: false hasContentIssue false

Numerical solutions of the mass transfer problem

Published online by Cambridge University Press:  01 July 2006

Serge Dubuc
Affiliation:
Département de mathématiques et de statistique, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, H3C 3J7, Canada; [email protected]
Issa Kagabo
Affiliation:
Department of Mathematics, Columbia Union College, 7600 Flower Avenue, Takoma Park, MD, 20912, USA; [email protected]
Get access

Abstract

Let μ and ν be two probability measures on the real line and let c be a lower semicontinuous function on the plane. The mass transfer problem consists in determining a measure ξ whose marginals coincide with μ and ν, and whose total cost ∫∫ c(x,y)dξ(x,y) is minimum. In this paper we present three algorithms to solve numerically this Monge-Kantorovitch problem when the commodity being shipped is one-dimensional and not necessarily confined to a bounded interval . We illustrate these numerical methods and determine the convergence rate.

Type
Research Article
Copyright
© EDP Sciences, 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables. Washington, D.C. (1964).
Anderson, E.J. and Philpott, A.B., Duality and an algorithm for a class of continuous transportation problems. Math. Oper. Res. 9 (1984) 222231. CrossRef
E.J. Anderson and P. Nash, Linear Programming in Infinite-Dimensional Spaces. Theory and Application. John Wiley & Sons, Chichester (1987).
P.E. Appell, Mémoire sur les déblais et les remblais des systèmes continus ou discontinus. Mémoires présentés par divers savants 29, 2e série (1887) 181–208.
P.E. Appell, Le problème géométrique des déblais et remblais. Gauthier-Villars, Paris (1928).
S. Dubuc and M. Tanguay, Déplacement de matériel continu unidimensionnel à moindre coût. RAIRO Rech. Oper., 20 (1986) 139–161.
Fréchet, M., Sur les tableaux de corrélation dont les marges sont données. Ann. Univ. Lyon 14 (1951) 5377.
Grigoriadis, M.D., An efficient implementation of the network simplex method. Netflow in Pisa (Pisa, 1983). Math. Program. Stud. 26 (1986) 83111. CrossRef
Hitchcock, F.L., The distribution of a product from several sources to numerous localities. J. Math. Phys. 20 (1941) 224230. CrossRef
Hoeffding, W., Masstabinvariante Korrelations-theorie. Schr. Math. Inst. Univ. Berlin 5 (1940) 181233.
Kantorovitch, L., On the translocation of masses. Doklady Akad. Nauk. SSSR 37 (1942) 199201.
Kellerer, H.G., Duality theorems for marginal problems. Z. Wahrsch. Verw. Gebiete 67 (1984) 399432. CrossRef
Levin, V.L. and Milyutin, A.A., The Problem of Mass Transfer with a Discontinuous Cost Function and the Mass Statement of the Duality for Convex Extremal Problems. Uspehi Mat. Nauk. 34 (1979) 368.
G. Monge, Mémoire sur la théorie des déblais et des remblais. Mém. Math. Phys. Acad. Royale Sci., Paris (1781) 666–704.
S.T. Rachev and L. Rüschendorf, Solution of some transportation problems with relaxed or additional constraints SIAM J. Control Optim. 32 (1994), 673–689.
A.H. Tchen, Inequalities for distributions with given marginals Ann. Prob. 8 (1980) 814–827.