No CrossRef data available.
Article contents
Un Algorithme pour la Bipartitiond'un Graphe en Sous-graphesde Cardinalité Fixée
Published online by Cambridge University Press: 15 August 2002
Abstract
A branch-and-bound method for solving the min cut with size constraint problemis presented. At each node of the branch-and-bound tree the feasible set isapproximated by an ellipsoid and a lower bound is computed by minimizing thequadratic objective function over this ellipsoid. An upper bound is alsoobtained by a Tabu search method. Numerical results will be presented.
- Type
- Research Article
- Information
- Copyright
- © EDP Sciences, 2001
References
Barnes, E.R., An algorithm for partitioning the nodes of a graph.
SIAM J. Algebraic Discrete Math.
3 (1982) 541-550.
CrossRef
Barnes, E.R., Vanelli, A. et Walker, J.Q., A new heuristic for partitioning the nodes of a graph.
SIAM J. Discrete Math.
1 (1988) 299-305.
CrossRef
R.B. Boppana, Eigenvalues and graph bissection: An average case analysis, in Proc. of the 28
th
annual symposium on computer sciences. IEEE London (1987) 280-285.
A. Billionnet et A. Faye, A lower bound for a constrained quadratic 0-1minimization problem. Discrete Appl. Math. (soumis).
Christofides, N. et Brooker, P., The optimal partitioning of graphs.
SIAM J. Appl. Math.
30 (1976) 55-69.
CrossRef
Donath, W.E. et Hoffman, A.J., Lower bounds for the partitioning of graphs.
IBM J. Res. Developments
17 (1973) 420-425.
CrossRef
Falkner, J., Rendl, F. et Wolkowicz, H., A computational study of graph partitioning.
Math. Programming
66 (1994) 211-240.
CrossRef
Computing, D.M. Gay optimal locally constrained steps.
SIAM J. Sci. Statist. Comput.
2 (1981) 186-197.
Held, M., Wolfe, P. et Crowder, H.D., Validation of the subgradient optimization.
Math. Programming
6 (1974) 62-88.
CrossRef
Johnson, D.S., Aragon, C.R., McGeoch, L.A. et Schevon, C., Optimization by simulated annealing: An experimental evaluation, Part 1, Graph partitioning.
Oper. Res.
37 (1989) 865-892.
CrossRef
Kernighan, B.W. et Lin, S., An efficient heuristic procedure for partitioning graphs.
The Bell System Technical J.
49 (1970) 291-307.
CrossRef
T. Lengauer, Combinatorial algorithms for integrated circuit layout. Wiley, Chicester (1990).
Martinez, J.M., Local minimizers of quadratic functions on euclidean balls and spheres.
SIAM J. Optim.
4 (1994) 159-176.
CrossRef
P. Michelon, N. Brossard et N. Maculan, A branch-and-bound scheme for unconstrained 0-1 quadratic programs, Rapport Technique # 960, DIRO. Université de Montréal. SIAM J. Optim. (soumis).
Moré, J.J. et Sorensen, D.C., Computing a trust region step.
SIAM J. Sci. Statist. Comput.
4 (1983) 553-572.
CrossRef
G.L. Nemhauser et L.A. Wolsey, Integer and Combinatorial Optimization. Wiley, New York (1988).
Roucairol, C. et Hansen, P., Problème de la bipartition minimale d'un graphe.
RAIRO: Oper. Res.
21 (1987) 325-348.
CrossRef
Sorensen, D.C., Newton's method with a model trust region modification.
SIAM J. Numer. Anal.
19 (1982) 406-426.
CrossRef