Article contents
Solution of a fractional combinatorial optimization problem by mixed integer programming
Published online by Cambridge University Press: 12 October 2006
Abstract
Fractionnal mathematical programs appear in numerous operations research, computer science and economic domains. We consider in this paper the problem of maximizing the sum of 0–1 hyperbolic ratios (SRH). In contrast to the single ratio problem, there has been little work inthe literature concerning this problem. We propose two mixed-integer linear programming formulations of SRH and develop two different strategies to solve them. The first one consists in using directly a general-purpose mixed-integer programming solver. The second one is based on a specialized branch and bound algorithm that reformulates more precisely the problem at every node of search tree. We also propose a heuristic method and we exploit the obtained solution in order to improve the first strategy. We present computational experiments that allow to compare the different approaches.
Keywords
- Type
- Research Article
- Information
- Copyright
- © EDP Sciences, 2006
References
- 3
- Cited by