Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-09T01:07:49.197Z Has data issue: false hasContentIssue false

A Cooperative Sensor Network: Optimal Deployment and Functioning

Published online by Cambridge University Press:  11 January 2011

Alfonso Farina
Affiliation:
SELEX Sistemi Integrati s.p.a., via Tiburtina km 12 400, 00131 Roma, Italy. [email protected]
Antonio Graziano
Affiliation:
SELEX Sistemi Integrati s.p.a., via Tiburtina km 12 400, 00131 Roma, Italy. [email protected]
Francesca Mariani
Affiliation:
CERI – Centro di Ricerca “Previsione Prevenzione e Controllo dei Rischi Geologici", Università di Roma “La Sapienza", Piazza Umberto Pilozzi 9, 00038 Valmontone (RM), Italy. [email protected]
Francesco Zirilli
Affiliation:
CERI – Centro di Ricerca “Previsione Prevenzione e Controllo dei Rischi Geologici", Università di Roma “La Sapienza", Piazza Umberto Pilozzi 9, 00038 Valmontone (RM), Italy. [email protected]
Get access

Abstract

A network of mobile cooperative sensors is considered. The followingproblems are studied:(1) the “optimal" deployment of the sensors on a given territory;(2) the detection of local anomalies in the noisy data measured by thesensors.In absence of an information fusion center in the network, from “local" interactions between sensors “global" solutions of these problems are found.

Type
Research Article
Copyright
© EDP Sciences, ROADEF, SMAI, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aurenhammer, F., Voronoi Diagrams – A Survey of a Fundamental Geometric Data Structure. ACM Comp. Surv. 23 (1991) 345405. CrossRef
F.R. Chung, Spectral Graph Theory, American Mathematical Society, Providence, R. I., USA, CBMS 92 (1997).
M.H. DeGroot and M.J. Schervish, Probability and Statistics, Pearson Addison Wesley, New York (2002).
Herzel, S., Recchioni, M.C. and Zirilli, F., Quadratically Convergent Method, A for Linear Programming. Linear Algebra Appl. 152 (1991) 255289. CrossRef
J.A. Snyman, Practical Mathematical Optimization: An Introduction to Basic Optimization Theory and Classical and New Gradient-Based Algorithms, Springer, Cambridge, Massachusetts, USA (2005).