Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-09T13:10:03.106Z Has data issue: false hasContentIssue false

A Branch-and-Bound method for solving Multi-Skill Project Scheduling Problem

Published online by Cambridge University Press:  15 June 2007

Odile Bellenguez-Morineau
Affiliation:
Laboratoire d'Informatique de l'Université de Tours, 64 av. Jean Portalis, 37200 Tours, France; [email protected]
Emmanuel Néron
Affiliation:
Laboratoire d'Informatique de l'Université de Tours, 64 av. Jean Portalis, 37200 Tours, France; [email protected]
Get access

Abstract

This paper deals with a special case of Project Scheduling problem: there is a project to schedule, which is made up of activities linked by precedence relations. Each activity requires specific skills to be done. Moreover, resources are staff members who master fixed skill(s). Thus, each resource requirement of an activity corresponds to the number of persons doing the corresponding skill that must be assigned to the activity during its whole processing time. We search for an exact solution that minimizes the makespan, using a Branch-and-Bound method.

Type
Research Article
Copyright
© EDP Sciences, ROADEF, SMAI, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ph. Baptiste, C. Le Pape and W. Nuitjen, Satisfiability tests and time-bound adjustments for cumulative scheduling problems, in Ann. Oper. Res. 92 (1999) 305–333. CrossRef
O. Bellenguez, C. Canon and E. Néron, Ordonnancement des formations des télé-opérateurs dans un centre de contacts clients, in Proc. ROADEF 2005, Tours, France (2005).
O. Bellenguez and E. Néron, Méthodes approchées pour le problème de gestion de projet multi-compétence, in École d'Automne de Recherche Opérationnelle, TOURS, France (2003) 39–42.
O. Bellenguez and E. Néron, An exact method for solving the multi-skill project scheduling problem, in Proc. Operations Research (OR2004), Tilburg, The Netherlands (2004) 97–98.
O. Bellenguez and E. Néron, Lower bounds for the multi-skill project scheduling problem with hierarchical levels of skills, in Proc. Practice and Theory of Automated Timetabling (PATAT2004), Pittsburgh, PA, USA (2004) 429–432.
O. Bellenguez and E. Néron, Methods for solving the multi-skill project scheduling problem, in Proc. 9th International Workshop on Project Management and Scheduling (PMS2004), Nancy, France (2004) 66–69.
Carlier, J., Scheduling jobs with release dates and tails on identical parallel machines to minimize the makespan. Eur. J. Oper. Res. 29 (1987) 298306. CrossRef
Carlier, J. and Latapie, B., Une méthode arborescente pour résoudre les problèmes cumulatifs. RAIRO-RO 25 (1991) 2338.
S. Hartmann and A. Drexl. Project scheduling with multiple modes: A comparison of exact algorithms. Networks 32 (1998) 283–297.
W. Hopp and M. Van Oyen, Agile workforce evaluation: a framework for cross-training and coordination. IIE Transactions 36 (2004).
Josefowska, J., Mika, M., Rozycki, R., Waligora, G. and Weglarz, J., Simulated annealing for multi-mode resource-constrained project scheduling problem. Ann. Oper. Res. 102 (2001) 137155. CrossRef
R. Klein, Scheduling of resource-constrained projects. Kluwer Academic Publishers (2000).
Kolen, A.W.J. and Kroon, L.G., On the computational complexity of (maximum) class scheduling. Eur. J. Oper. Res. 54 (1991) 2328. CrossRef
Kolisch, R. and Sprecher, A., Psplib - a project scheduling problem library. Eur. J. Oper. Res. 96 (1997) 205216. CrossRef
R. Kolisch and A. Sprecher, Psplib - a project scheduling problem library. pages ftp://ftp.bwl.uni–kiel.de/pub/operations–research/psplib/html/indes.html, (2000).
Kroon, L.G., Salomon, M. and Van Wassenhove, L.N., Exact and approximation algorithms for the operational fixed interval scheduling problem. Eur. J. Oper. Res. 82 (1995) 190205. CrossRef
Lopez, P., Erschler, J. and Esquirol, P., Ordonnancement de tâches sous contraintes: une approche énergétique. RAIRO-APII 26 (1992) 453481.
Mingozzi, A., Maniezzo, V., Riciardelli, S. and Bianco, L., An exact algorithm for the resource-constrained project scheduling problem based on a new mathematical formulation. Management Science 44 (1998) 714729. CrossRef
E. Neron, Lower bounds for the multi-skill project scheduling problem, in Proc. 8th International Workshop on Project Management and Scheduling (PMS2002), Valencia, Spain (2002) 274–277.
L. Ozdamar, A genetic algorithm approach to a general category project scheduling problem. IEEE Transactions on Systems, Man, and Cybernetics 29 to be published.
G. Pepiot, N. Cheikhrouhou and R. Glardon, Modèle de compétence: vers un formalisme, in Proc. Conférence francophone de Modélisation et de SIMulation (MOSIM2004), Nantes, France (2004) 503–510.
De Reyck, B. and Herroelen, W., The multi-mode resource-constrained project scheduling problem with generalized precedence relations. Eur. J. Oper. Res. 119 (1999) 538556. CrossRef
E. Rolland, R.A. Patterson, K. Ward and B. Dodin, Scheduling differentially-skilled staff to multiple projects with severe deadlines. Eur. J. Oper. Res. (2005). Submitted to the special issue of PMS (2004).
Sprecher, A. and Drexl, A., Multi-mode resource constrained project scheduling problem by a simple, general and powerful sequencing algorithm. Eur. J. Oper. Res. 107 (1998) 431450. CrossRef
Sprecher, A., Kolisch, R. and Drexl, A., Semi-active, active and non-delay schedules for the resource constrained project scheduling problem. Eur. J. Oper. Res. 80 (1995) 94102. CrossRef
I. Toroslu, Personnel assignment problem with hierarchical ordering constraints. in Proc. Personnel assignment Problem with hierarchical ordering constraints (2003) 493–510.