Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T08:27:58.037Z Has data issue: false hasContentIssue false

On the nature and timing of oxygen radical production following exposure of Arabidopsis thaliana leaves to uranium, cadmium or a combination of both stressors

Published online by Cambridge University Press:  09 January 2012

N. Horemans
Affiliation:
Belgian Nuclear Research Centre (SCKCEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol, Belgium
N. Vanhoudt
Affiliation:
Belgian Nuclear Research Centre (SCKCEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol, Belgium
M. Janssens
Affiliation:
Belgian Nuclear Research Centre (SCKCEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol, Belgium
B. Van Chaze
Affiliation:
Belgian Nuclear Research Centre (SCKCEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol, Belgium
J. Wannijn
Affiliation:
Belgian Nuclear Research Centre (SCKCEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol, Belgium
M. Van Hees
Affiliation:
Belgian Nuclear Research Centre (SCKCEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol, Belgium
H. Vandenhove
Affiliation:
Belgian Nuclear Research Centre (SCKCEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol, Belgium
Get access

Abstract

The toxicity and oxidative stress responses of 19-day old Arabidopsis seedlings induced by U (66 μM) and Cd (20 μM) alone or in a binary mixture set-up (equitoxic mixture) are studied in function of time. After 48h a significant decrease in root and shoot growth and a simultaneous increase in anthocyanin production was evident in all treated plants.

Production of O2 or H2O2 was visualized by staining freshly harvested leaves with nitrobluetetrazolium or diaminobezidine, respectively. With this method production of O2 was only significantly measurable after 168 h treatment which coincides with a significant decrease in biomass production and probably also plant cell death. For Cd treated plants a significant increase in H2O2 production was measurable from 24h onwards. In contrast, a similar H2O2 production could not be measured in U or U + Cd treated plants. Both water and lipophilic soluble antioxidants significantly increased in U treated plants after 48 h. These high antioxidant levels might detoxify potential H2O2 produced in the U treated plants. In contrast for Cd treated plants only after 168h a significant increase in water soluble antioxidants was measured whereas no difference in the lipophilic fraction was visible.

Type
Research Article
Copyright
© Owned by the authors, published by EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Sharma S. S. and Dietz K. J., Trends in Plant Science. 14(2009): 43-50.
Verbruggen N., Hermans C. and Schat H., Current Opinion in Plant Biology. 12(2009): 364-372.
Cuypers Ann, Karen Smeets, Jos Ruytinx, Kelly Opdenakker, Els Keunen, Tony Remans, Nele Horemans, Nathalie Vanhoudt, Suzy Van Sanden, Frank Van Belleghem, Yves Guisez, Jan Colpaert and Jaco Vangronsveld, Journal of Plant Physiology. 168(2011): 309-316.
Garnier L., Simon-Plas F., Thuleau P., Agnel J. P., Blein J. P., Ranjeva R. and Montillet J. L., Plant Cell and Environment. 29(2006): 1956-1969.
Vandenhove H., Cuypers A., Van Hees M., Koppen G. and Wannijn J., Plant Physiology and Biochemistry. 44(2006): 795-805.
Vanhoudt N., Vandenhove H., Horemans N., Wannijn J., Bujanic A., Vangronsveld J. and Cuypers A., Plant Physiology and Biochemistry. 48(2010): 879-886.
Vanhoudt N., Vandenhove H., Smeets K., Remans T., Van Hees M., Wannijn J., Vangronsveld J. and Cuypers A., Plant Physiology and Biochemistry. 46(2008): 987-996.
Porter B. W., Zhu Y. J., Webb D. T. and Christopher D. A., Annals of Botany. 103(2009): 847-858.
Vanderauwera S., Zimmermann P., Rombauts S., Vandenabeele S., Langebartels C., Gruissem W., Inze D. and Van Breusegem F., Plant Physiology. 139(2005): 806-821.
Penarrieta J. M., Alvarado J. A., Akesson B. and Bergenstahl B., Molecular Nutrition & Food Research. 52(2008): 708-717.
Kerchev P. and Ivanov S., Biotechnology & Biotechnological Equipment. 22(2008): 556-559.
Romero-Puertas M. C., Rodriguez-Serrano M., Corpas F. J., Gomez M., Del Rio L. A. and Sandalio L. M., Plant Cell and Environment. 27(2004): 1122-1134.
Hernandez I. and Van Breusegem F., Plant Science. 179(2010): 297-301.
Horemans Nele, Raeymaekers Tine, Van Beek Kim, Nowocin Anna, Blust Ronny, Broos Katleen, Cuypers Ann, Vangronsveld Jaco and Guisez Yves, Journal of Experimental Botany. 58(2007): 4307-4317.
Smeets K., Ruytinx J., Semane B., Van Belleghem F., Remans T., Van Sanden S., Vangronsveld J. and Cuypers A., Environmental and Experimental Botany. 63(2008): 1-8.
Vanhoudt N., Vandenhove H., Horemans N., Remans T., Opdenakker K., Smeets K., Martinez Bello D., Wannijn J., Van Hees M., Vangronsveld J. and Cuypers A. , Journal of Environmental Radioactivity. (2011).
Vanhoudt N., Cuypers A., Horemans N., Remans T., Opdenakker K., Smeets K., Martinez Bello D., Havaux M., Wannijn J., Van Hees M., Vangronsveld J. and Vandenhove H. , Journal of Environmental Radioactivity. (2011).
Kazan K. and Manners J. M., Trends in Plant Science. 14(2009): 373-382.
Wasternack C., Annals of Botany. 100(2007): 681-697.