Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T07:06:30.517Z Has data issue: false hasContentIssue false

Les cellules souches mésenchymateuses favorisent la cicatrisation des lésions cutanées radio induites

Published online by Cambridge University Press:  14 December 2006

S. François
Affiliation:
IRSN, Direction de radioprotection de l’Homme, B.P. 17, 92262 Fontenay-aux-Roses Cedex, France
M. Mouiseddine
Affiliation:
IRSN, Direction de radioprotection de l’Homme, B.P. 17, 92262 Fontenay-aux-Roses Cedex, France
N. Mathieu
Affiliation:
IRSN, Direction de radioprotection de l’Homme, B.P. 17, 92262 Fontenay-aux-Roses Cedex, France
A. Semont
Affiliation:
IRSN, Direction de radioprotection de l’Homme, B.P. 17, 92262 Fontenay-aux-Roses Cedex, France
P. Monti
Affiliation:
IRSN, Direction de radioprotection de l’Homme, B.P. 17, 92262 Fontenay-aux-Roses Cedex, France
N. Dudoignon
Affiliation:
IRSN, Direction de radioprotection de l’Homme, B.P. 17, 92262 Fontenay-aux-Roses Cedex, France
A. Saché
Affiliation:
IRSN, Direction de radioprotection de l’Homme, B.P. 17, 92262 Fontenay-aux-Roses Cedex, France
A. Boutarfa
Affiliation:
IRSN, Direction de radioprotection de l’Homme, B.P. 17, 92262 Fontenay-aux-Roses Cedex, France
D. Thierry
Affiliation:
IRSN, Direction de radioprotection de l’Homme, B.P. 17, 92262 Fontenay-aux-Roses Cedex, France
P. Voisin
Affiliation:
IRSN, Direction de radioprotection de l’Homme, B.P. 17, 92262 Fontenay-aux-Roses Cedex, France
P. Gourmelon
Affiliation:
IRSN, Direction de radioprotection de l’Homme, B.P. 17, 92262 Fontenay-aux-Roses Cedex, France
A. Chapel
Affiliation:
IRSN, Direction de radioprotection de l’Homme, B.P. 17, 92262 Fontenay-aux-Roses Cedex, France
Get access

Abstract

De nombreuses études suggèrent que les cellules souches adultes et plus particulièrement les cellules souches Mésenchymateuses humaines (CSMh) pourraient être utilisées pour réparer de nombreux organes. Nous avons étudié la capacité des CSMh à réduire les lésions cutanées radio induite. Pour induire des lésions sévères de la peau, des souris NOD/SCID ont été irradiées au niveau de la patte droite postérieure (30 Gy, débit 2,7 Gy/mn) en utilisant une source gamma au 60Co. Les CSMh ont été injectées 24 heures après irradiation par voie intraveineuse. La présence de cellules humaines, la sévérité des lésions et les processus de cicatrisation ont été étudiés sur les échantillons de peau prélevés de 3 à 8 semaines après irradiation. Nous avons pu observer que chez les souris greffées avec des CSMh, le niveau d’atteinte cutanée radio induite est significativement plus faible. Les scores cliniques utilisés pour l’étude de l’évolution des lésions cutanées de la peau sont significativement améliorés et une cicatrisation plus rapide est observée en comparaison des souris non injectées. La présence de cellules humaines a pu être détectée par PCR quantitative dans les zones cutanées en cours de cicatrisation. Ces résultats suggèrent premièrement que les CSMh sont capables de coloniser la peau altérée par les rayonnements ionisants et deuxièmement qu’elles accélèrent le processus de réparation de ce tissu limitant ainsi les complications tissulaires radio induites. La greffe de CSMh pourrait être un traitement thérapeutique efficace des phases précoces du syndrome cutané radio induit.

Type
Research Article
Copyright
© EDP Sciences, 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ai, G. et al. (2002) The experimental study of bone marrow mesenchymal stem cells on the repair of skin wound combined with local radiation injury, Zhonghua Yi Xue Za Zhi 82, 1632-1636.
Archambeau, J.O., Pezner, R., Wasserman, T. (1995) Pathophysiology of irradiated skin and breast, Int. J. Radiat. Oncol. Biol. Phys. 31, 1171-1185. CrossRef
Badavias, E., Abedi, M., Butmarc, J., Falanga, V., Quesenberry, P. (2003) Participation of bone marrow derived cells in cutaneous wound healing, J. Cell. Physiol. 196, 245-250. CrossRef
Bensidhoum, M., Chapel, A., Francois, S., Mazurier, C., Fouillard, L., Bouchet, S., Bertho, J.M., Gourmelon, P., Aigueperse, J., Charbord, P., Gorin, N.C., Thierry, D., Lopez, M. (2004) Homing of in vitro expanded Stro-1- or Stro-1+ human mesenchymal stem cells into the NOD/SCID mouse and their role in supporting human CD34 cell engraftment, Blood 103, 3313-3319. CrossRef
Borue, X., Lee, S., Grove, J., Herzog, E., Harris, R., Diflo, T., Glusac, E., Hyman, K., Theise, N., Krause, D. (2004) Bone marrow-derived cells contribute to epithelial engraftment during wound healing, Am. J. Pathol. 165, 1767-1772. CrossRef
Brittan, M., Braun, K.M., Reynolds, L.E., Conti, F.J., Reynolds, A.R., Poulsom, R., Alison, M.R., Wright, N.A., Hodivala-Dilke, K.M. (2005) Bone marrow cells engraft within the epidermis and proliferate in vivo with no evidence of cell fusion, J. Pathol. 205, 1-13. CrossRef
Caplan, A.I., Dennis, J.E. (2006) Mesenchymal Stem Cells as trophic mediators, J. Cell. Biochem. 98, 1076-1084. CrossRef
Chapel, A., Bertho, J.M., Bensidhoum, M., Fouillard, L., Young, R.G., Frick, J., Demarquay, C., Cuvelier, F., Mathieu, E., Trompier, F., Dudoignon, N., Germain, C., Mazurier, C., Aigueperse, J., Borneman, J., Gorin, N.Cl., Gourmelon, P., Thierry, D. (2003) Mesenchymal stem cells home to injured tissues when co-infused with haematopoetic cells to treat a radiation-induced multi-organ failure syndrome, J. Gen. Med. 5, 1028-1038. CrossRef
Douglas, B.G., Fowler, J.F. (1976) The effect of multiple small doses of X rays on skin reactions in the mouse and a basic interpretation, Radiat. Res. 66, 401-426. CrossRef
Fathke, C., Wilson, L., Hutter, J., Kapoor, V., Smith, A., Hocking, A., Isik, F. (2004) Contribution of bone marrow-derived cells to skin: collagen deposition and wound repair, Stem. Cells 22, 812-822. CrossRef
François, S., Bensidhoum, M., Mouiseddine, M., Mazurier, C., Allenet, B., Semont, A., Frick, J., Saché, A., Bouchet, S., Thierry, D., Gourmelon, P., Gorin, N., Chapel, A. (2006) Local irradiation induces not only homing of human Mesenchymal Stem Cells (hMSC) at exposed sites but promotes their widespread engraftment to multiple organs: a study of their quantitative distribution following irradiation damages, Stem. Cells 24, 1020-1029. CrossRefPubMed
Hoeller, U., Tribius, S., Kuhlmey, A., Grader, K., Fehlauer, F., Alberti, W. (2003) Increasing the rate of late toxicity by changing the score? A comparison of RTGO/EORTC and LENT/SOMA scores, Int. J. Radiat. Oncol. 55, 1013-1018. CrossRef
Hopewell, J.W. (1990) The skin: its structure and response to ionizing radiation, Int. J. Radiat. Biol. 57, 751-773. CrossRef
Kataoka K., Medina R.J., Kageyama T., Miyazaki M., Yoshino T., Makino T., Huh N.H. (2003) Participation of adult mouse bone marrow cells in reconstitution of skin, Am. J. Patol. 163, 1227-1231.
Koc, O.N., Lazarus, H.M. (2001) Mesenchymal stem cells: heading into the clinic, Bone Marrow Transplant. 27, 235-239. CrossRef
Koc, O.N., Day, J., Nieder, M., Gerson, S.L., Lazarus, H.M., Krivit, W. (2002) Allogeneic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS-IH), Bone Marrow Transplant. 30, 215-222. CrossRef
Le Blanc, K., Gotherstrom, C., Ringden, O., Hassan, M., McMahon, R., Horwitz, E., Anneren, G., Axelsson, O., Nunn, J., Ewald, U., Norden-Lindeberg, S., Jansson, M., Dalton, A., Astrom, E., Westgren, M. (2005) Fetal mesenchymal stem-cell engraftment in bone after in utero transplantation in a patient with severe osteogenesis imperfecta, Transplantation 79, 1607-1614. CrossRefPubMed
Lefaix, J.L., Daburon, F. (1998) Diagnosis of acute localized irradiation lesions: review of the French experimental experience, Health Phys. 75, 375-384. CrossRef
Mansilla, E. et al. (2005) Human mesenchymal stem cells are tolerized by mice and improve skin and spinal cord injuries, Transplantation Proceedings 37, 292-294. CrossRef
Mori, L. et al. (2005) Fibrocytes contribute to the myofibroblast population in wounded skin and originate from the bone marrow, Exp. Cell. Res. 304, 81-90 CrossRef
Nakagawa, H., Akita, S., Fukui, M., Fujii, T., Akino, K. (2005) Human mesenchymal stem cells successfully improve skin-substitute wound healing, Brit. J. Dermatol. 153, 29-36. CrossRef
Peter R.U. (2002) Management of skin injuries in radiation accidents: the cutaneous radiation syndrome, in: The Medical Basis of Radiation Accidents Preparedness: The Clinical Care of Victims, R.C. Ricks, M.E. Berger, F.M. O'Hara (Eds). Parthenon, New York, pp. 225-229.
Peter, R.U. (2005) Cutaneous radiation syndrome in multiorgan failure, Br. J. Radiol. Suppl. 27, 180-184. CrossRef
Savill N.J., Sherratt J.A. (2003) Control of epidermal stem cell clusters by Notch-mediated lateral induction, Dev. Biol. 258, 141-153.
Semont A., Francois S., Mouiseddine M., Francois A., Saché A., Frick J., Thierry D., Chapel A. (2006, in press) Mesenchymal Stem Cells Increase Self-Renewal of Small Intestinal Epithelium and Accelerate Structural Recovery After Radiation Injury, in: Tissue Engineering, a special edition of the Advances in Experimental Medicine and Biology, F. Fisher (Ed). Springer, New York, Vol. 585, pp. 19-30.
Yamaguchi, Y., Kubo, T., Murakami, T., Takahashi, M., Hakamata, Y., Kobayashi, E., Yoshida, S., Hosokawa, K., Yoshikawa, K., Itami, S. (2005) Bone marrow cells differentiate into wound myofibroblasts and accelerate the healing of wounds with ewposed bones when combined with an occlusive dressing, Br. J. Dermatol. 152, 616-622. CrossRef
Weimin, D., Qin, H., Lianming, L., Changhong, L., Wei, G., Zhigang, Z., Shengguo, Y., Hongye, D., Ferid, M., Zhao, R.C.H. (2005) Engrafted Bone Marrow-Derived Flk-1+ Mesenchymal Stem Cells Regenerate Skin, Tissue Engineering 11, 110-119.