Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T12:16:43.012Z Has data issue: false hasContentIssue false

La controverse sur les effets des faibles doses de rayonnements ionisantset la relation linéaire sans seuil

Published online by Cambridge University Press:  28 June 2007

M. Tubiana
Affiliation:
Faculté de Médecine, Centre Antoine Béclère, 45 rue des Saints-Pères, 75006 Paris, France
R. Masse
Affiliation:
11 rue du Haras, Résidence Le Boqueteau, Acacias 2, 91240 Saint-Michel-sur-Orge, France
F. De Vathaire
Affiliation:
INSERM U 605. Institut Gustave Roussy, 39 rue Camille Desmoulins, 94805 Villejuif Cedex, France
D. Averbeck
Affiliation:
Institut Curie, Section de Recherche, Laboratoire Raymond Latarjet, UMR2027 du CNRS, Centre Universitaire d’Orsay, 91405 Orsay Cedex, France
A. Aurengo
Affiliation:
Service Médecine Nucléaire, Hôpital Pitié-Salpêtrière, 75013 Paris, France
Get access

Abstract

Si la publication 99 de la CIPR et le BEIR VII recommandent de maintenir l’usage d’une relation linéaire sans seuil (RLSS) pour estimer l’excès de risque relatif de cancer lié à de faibles doses de rayonnements ionisants (RI), le rapport conjoint de l’Académie des sciences et de l’Académie de médecine (2005) conclut qu’elle conduit à une forte surestimation des risques des faibles et des très faibles doses. Les fondements de la RLSS sont remis en question par de nouvelles données biologiques et de l’expérimentation animale qui montrent que la défense contre les RI met en jeu le micro-environnement cellulaire et le système immunitaire, et que les mécanismes de défense contre les faibles doses de RI sont différents et plus efficaces. Ces cellules lésées par une irradiation à faible dose sont éliminées ; la réparation s’impose à forte dose pour préserver les fonctions tissulaires. Les organismes pluricellulaires réalisent ainsi une défense au moindre coût et au moindre risque contre les RI et les dégâts du métabolisme oxydatif. Les différences entre les défenses contre les faibles et fortes doses sont particulièrement nettes dans le cas de contamination par des émetteurs alpha qui montrent chez l’homme et l’animal des effets à seuil de plusieurs grays. Ces différences remettent en question les résultats des études épidémiologiques qui, pour des raisons de puissance statistique, estiment les risques en fusionnant des données obtenues pour des gammes de doses très étendues, ce qui sous entend implicitement que les mécanismes de cancérogenèse sont similaires quelle que soit la dose. L’estimation des risques des faibles doses de RI doit reposer sur des études spécifiquement limitées aux faibles doses, avec une évaluation précise de facteurs de confusion potentiels. La synthèse des études de cohorte pour lesquelles on dispose des coefficients de risque fondés sur les seules doses inférieures à 100 mSv chez l’adulte ne montre pas d’excès de risque relatif significatif, ni pour les tumeurs solides ni pour les leucémies.

Type
Research Article
Copyright
© EDP Sciences, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amundson, S.A., Lee, R.A., Koch-Paiz, C.A., Bittner, M.L., Meltzer, P., Trent, J.M., Fornace, A.J. Jr (2003) Differential responses of stress genes to low dose-rate gamma irradiation, Mol. Cancer Res. 1, 445-452.
Andersson, M., Storm, H.H. (1992) Cancer incidence among Danish thorotrast-exposed patiens, J. Natl. Cancer Inst. 84, 1318-1325. CrossRef
Averbeck, D. (2000) Mecanismes de réparation et mutagénèse radioinduite chez les eucaryotes supérieurs, Cancer Radiother. 4, 1-20. CrossRef
Averbeck D. (2007) New biological data in relation with low dose risk, DOE, in press.
Averbeck, D., Testard, L., Boucher, D. (2006) Changing views on ionizing radiation-induced cellular effects, Int. J. Low Rad. 3, 117-134. CrossRef
Bakkenist, C.J., Kastan, M.B. (2004) Initiating cellular stress responses, Cell 118, 9-17. CrossRef
Barcellos-Hoff, M.H. (2005) Integrative Radiation Carcinogenesis: interactions between cell and tissue responses to DNA damage, Sem. Cancer Biol. 15, 138-148. CrossRef
Bartkova, J., Rezaei, N., Liontos, M. et al. (2006) Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints, Nature 444, 633-637. CrossRef
Beachy, P.A., Karhadhar, S.S., Berman, D. (2004) Tissue repair and stem cell renewal in carcinogenesis, Nature 432, 324-331. CrossRef
BEIR VII (2005) National Research Council of the National Academies of USA, Health risk from exposure to low levels of ionizing radiation. Pre-publication version, July 2005.
Belyakov, O.V., Folkard, M., Mothersill, C., Prise, K.M., Michael, B.D. (2006) Bystander induced differentiation: a major response to targeted irradiation of a urothelial explant model, Mutat. Res. 597, 43-49. CrossRef
Berrington, A., Darby, S.C., Weiss, H.A., Doll, R. (2001) 100 years of observation on British Radiologists: mortality from cancer and other causes 1987-1997, Br. J. Radiology 74, 507-519. CrossRef
Berrington de Gonzalez, A., Darby, S. (2004) Risk of cancer from diagnostic X-rays: estimates for the UK and 14 other countries, Lancet 363, 345-351. CrossRef
Bhowmick, N.A., Chytil, A., Plieth, D., Gorska, A.E., Dumont, N., Shappell, S., Washington, M.K., Neilson, E.G., Moses, H.L. (2004) TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia, Science 303, 775-777. CrossRef
Bishay, K., Ory, K., Olivier, M.F., Lebeau, J., Levalois, C., Chevillard, S. (2001) DNA damage-related RNA expression to assess individual sensitivity to ionizing radiation, Carcinogenesis 22, 1179-1183. CrossRef
Bithell J.F. (1993) Statistical issues in assessing the evidence associating obstetric irradiation and childhood malignancy, E. Lengfelder, H. Wendhausen (Eds). Neue Bewertung des Strahlenriskos, Niedrigdosis Strahlung und Gesundheit, Munich, pp. 53-60.
Blettner, M., Zeeb, H., Auviven, A. et al. (2003) Mortality from cancer and other causes among male airline cockpit in Europe, Int. J. Cancer 106, 946-952. CrossRef
Boice, J.D., Preston, D., Davis, F.G., Monson, R.R. (1991a) Frequent chest X-ray fluoroscopy and breast cancer incidence among tuberculosis patients in Massachusetts, Radiat. Res. 125, 214-222. CrossRef
Boice, J.D.J., Morin, M.M., Glass, A.G. et al. (1991b) Diagnostic X-ray procedures and risk of leukemia, lymphoma, and multiple myeloma, JAMA 265, 1290-1294. CrossRef
Boice, J.D.J., Engholm, G., Kleinerman, R.A. et al. (1998) Radiation dose and second cancer risk in patients treated for cancer of the cervix, Radiat. Res. 116, 3-55. CrossRef
Boucher, D., Hindo, J., Averbeck, D. (2004) Increased repair of gamma-induced DNA double-strand breaks at lower dose-rate in CHO cells, Can. J. Physiol. Pharmacol. 82, 125-132. CrossRef
Brash, D.E. (1997) Sunlight and the onset of skin cancers, Trend. Genet. 13, 410-414. CrossRef
Bravard, A., Luccioni, C., Moustacchi, E., Rigaud, O. (1999) Contribution of antioxydant enzymes in the adaptative response to ionizing radiation of human lymphoblasts, Int. J. Radiat. Biol. 75, 639-645. CrossRef
Breckow, J. (2006) Linear-no-threshold is a radiation-protection standard rather than a mechanistic effect model, Radiat. Environ. Biophys. 44, 257-260. CrossRef
Brenner, D.J., Doll, R., Goodhead, D.T., Hall, E.J., Land, C.E., Little, J.B., Lubin, J.H., Preston, D.L., Preston, R.J., Puskin, J.S., Ron, E., Sachs, R.K., Samet, J.M., Setlow, R.B., Zaider, M. (2003) Cancer risk attributable to low doses of ionizing radiation: Assessing what we really know, Proc. Natl. Acad. Sci. USA 100, 13761-13766. CrossRef
Brenner, D.J., Sachs, R.K. (2006) Estimating radiation-induced cancer risks at very low doses: rationale for using a linear no-threshold approach, Radiat. Environ. Biophys. 44, 253-256. CrossRef
Burns F.J., Albert R.E. (1986) “Dose-response for radiation-induced cancer in rat skin”, In Radiation carcinogenesis and DNA alterations, F.J. Burns, A.C. Upton, G. Silini (Eds). Plenum Press, Lifes Sciences, pp. 51-70.
Cardis, E., Gilbert, E.S., Carpenter, L. et al. (1995) Effects of low dose rates of external ionizing radiation: cancer mortality among nuclear industry workers in three countries, Radiat. Res. 142, 117-132. CrossRef
Cardis, E., Kesminienne, A., Ivanov, V. et al. (2005a) Risk of thyroid cancer after exposure to 131I in childhood, J. Nat. Cancer Inst. 97, 724-732. CrossRef
Cardis, E., Vrijheid, M., Blettner, M. et al. (2005b) Risk of cancer after low doses of ionising radiation : retrospective cohort study in 15 countries, Brit. Med. J. 333, 77-83. CrossRef
Cardis, E., Howe, G., Ron, E., Bebeshko, V.G., Bogdanova, T., Bouville, A. et al. (2006) Cancer consequences of the Chernobyl Accidet: 20 Years After, J. Radiol. Prot. 26, 125-137. CrossRef
Carnes, B.A., Groer, P.G., Kotec, T.J. (1997) Radium dial workers: Issues concerning dose response and modeling, Radiat. Res. 147, 707-714. CrossRef
Castronovo, F. (1999) Teratogen update: Radiation and Chernobyl, Teratology 60, 100-106. 3.0.CO;2-H>CrossRef
Chalmers, A., Johnston, P., Woodcock, M., Joiner, M., Marples, B. (2004) PARP-1, PARP-2, and the cellular response to low doses of ionizing radiation, Int. J. Radiat. Oncol. Biol. Phys. 58, 410-419. CrossRef
Collis, S.J., Schwaninger, J.M., Ntambi, A.J., Keller, T.W., Nelson, W.G., Dillehay, L.E., Deweese, T.L. (2004) Evasion of early cellular response mechanisms following low level radiation induced DNA damage, J. Biol. Chem. 279, 49624-49632. CrossRef
Darby, S., Hill, D., Auvinene, A., Barros-Dios, J.M. et al. (2005) Radon in homes and risk of lung cancer: collaborative analysis of individual data from 13 European case-control studies, Brit. Med. J. 330, 223-227. CrossRef
Darby S., Hill D., Deo H., Auvinen A. et al. (2006) Residential radon and lung cancer-detailed results of a collaborative analysis of individual data on 7148 persons with lung cancer and 14,208 persons without lung cancer from 13 epidemiologic studies in Europe, Scand. J. Work Environ. Health 32 (Suppl 1), 1-83.
Davis, F.G., Boice, J.D.J., Hrubec, Z., Monson, R.R. (1989) Cancer mortality in a radiation-exposed cohort of Massachusetts tuberculosis patients, Cancer Res. 49, 6130-6136.
De Toledo, S.M., Asaad, N., Venkatachalam, P., Li, L., Howell, R.W., Spitz, D.R., Azzam, E.I. (2006) Adaptive responses to low-dose/low-dose-rate gamma rays in normal human fibroblasts: the role of growth architecture and oxidative metabolism, Radiat. Res. 166, 849-857. CrossRef
de Vathaire, F., Hardiman, C., Shamsalidin, A. et al. (2000) Thyroid carcinoma following irradiation for a first cancer during childhood, Arch. Inter. Med. 159, 2713-2719. CrossRef
Delongchamp, R.R., Mabushi, K., Yasuhiko, Y. et al. (1997) Cancer mortality among atomic bomb survivors exposed in utero or as young chidren, Radiat. Res. 147, 385-395. CrossRef
Dickman, P.W., Holm, L.E., Lundell, G.R., Boice, J.D., Hall, P. (2003) Thyroid cancer risk after thyroid examination with 131I: a population based cohort study in Sweden, Int. J. Cancer 106, 580-587. CrossRef
Dikomey, E., Brammer, I. (2000) Relationship between cellular radiosensitivity and non-repaired double-strand breaks studied for different growth states, dose rates and plating conditions in a normal fibroblast line, Int. J. Radiat. Biol. 76, 773-781.
Doll, R., Wakeford, R. (1997) Risk of childhood cancer from fetal irradiation, Br. J. Radiol. 70, 130-139. CrossRef
Donadieu, J., Scanff, P., Pirard, P., Aubert, B. (2006) Exposition médicale aux rayonnements ionisants à vise diagnostique de la population française : état des lieux fin 2002 en vue de la mise en place d’un système de surveillance, BEH 15-16, 102-106.
Doody, M.M., Mandel, J.S., Lubin, J.H., Boice, J.D. (1998) Mortality among USA radiologic technologists 1926-1990, Cancer Causes Control 9, 67-75. CrossRef
Doody, M.M., Lonstein, J.E., Stovall, M., Hacker, D.G., Luckyanov, N., Land, C.E. (2000) U.S. Scoliosis Cohort Study Collaborators. Breast cancer mortality following diagnostic X-rays: Findings from the U.S. Scoliosis Cohort Study, Spine 25, 2052-2063. CrossRef
Duport, P. (2003) A database of cancer induction by low dose radiation in mammals: overview and initial observations, Int. J. Low Radiation 1, 120-131. CrossRef
Euvrard, S., Kanitakis, J., Claudis, D. (2003) Skin cancers after organ transplantation, N. Engl. J. Med. 348, 1681-1691. CrossRef
Fernet, M., Ponette, V., Deniaud-Alexandre, E., Menissier-De Murcia, J., De Murcia, G., Giocanti, N., Megnin-Chanet, F., Favaudon, V. (2000) Poly (ADP-Ribose) polymerase, a major determinant of early cell response X ionising radiation, Int. J. Rad. Oncol. Biol. Phys. 76, 73-84.
Franco, N., Lamartine, J., Frouin, V. et al. (2005) Low-Dose Exposure to γ rays induces specific gene regulations in normal human keratinocytes, Radiat. Res. 163, 623-635. CrossRef
Franklyn, J.A., Maisonneuve, L., Sheppard, M., Betteridge, T., Boyle, P. (1999) Cancer incidence and mortality after radioiodine treatment for hyperthyroidism: a population based study, Lancet 353, 2111-2115. CrossRef
Fry, S.A. (1998) Studies of US radium dial workers: An epidemiological classic, Radiat. Res. 150, S21-S29. CrossRef
Gambard J.P., Mitton N., Pirard P. (2000) Campagne nationale de mesure de l’exposition domestique au radon IPSN-DGS Bilan et représentation cartographique des mesures au 1er janvier 2000, www.ipsn.fr.
Hahn, K., Schnell-Inderst, P., Grosche, B., Holm, L.E. (2001) Thyroid cancer after diagnostic administration of iodine-131 in childhood, Radiat. Res. 156, 61-70. CrossRef
Harvey, E.B., Boice, J.D., Honeyman, M., Flannery, J.T. (1985) Prenatal X-ray exposure and childhood cancer in twins, N. Engl. J. Med. 312, 541-545. CrossRef
Hayata J., Wang C., Zhang W. et al. (2004). Effect of hight level natural radiation on chromosomes of residents in southern china, Cytogenet. Genome Res. 104, 237-239.
Hoffman, D.A., Bronstein, J.E., Morin, M.M. (1989) Breast cancer in women with scoliosis exposed to multiple diagnosis X-rays, J. Natl. Cancer Inst. 81, 1307-1312. CrossRef
Holm, L.E., Hall, P., Wiklund, K. et al. (1991) Cancer risk after iodine-131 therapy for hyperthyroidism, J. Natl. Cancer Inst. 83, 1072-1077. CrossRef
Howe G.R., Zablotska L.B., Fix J.J., Egel J., Buchanan J. (2004) Analysis of the mortality experience amongst U.S. nuclear power industry workers after chronic low-dose exposure to ionizing radiation, Radiat. Res. Nov. 162(5), 517-26.
Hrubec, Z., Boice, J.D., Monson, R.R., Rosenstein, M. (1989) Breast Cancer after multiple chest fluoroscopies: second follow-up of Massachusetts Women with Tuberculosis, Cancer Res. 49, 229-234.
ICRP Publication 99 (2005) Low-dose Extrapolation of Radiation-related cancer Risk, Ann. ICRP 35(4).
Inksip, P.D., Harvey, E.B., Boice, J.D. et al. (1991) Incidence of cancer in twins, Cancer Causes Control 2, 315-324.
Inskip, P.D., Ekbom, A., Galanti, M.R., Grimelius, L., Boice, J.D.J. (1995) Medical diagnostic X rays and thyroid cancer, J. Natl. Cancer Inst. 87, 1613-1621. CrossRef
Ivanov, V., Ilyin, L., Gorski, A., Tukov, A., Naumenko, R. (2004) Radiation and epidemiological analysis for solid cancer incidence among nuclear workers who participated in recovery operations following the accident at the Chernobyl, J. Radiat. Res. (Tokyo) 45, 41-44. CrossRef
Jaworowski Z. (2006) The real Chernobyl folly, 21st century, Spring, 59-72.
Kamiya, K., Yasukawa-Barnes, J., Mitchen, J., Gould, M., Clifton, K. (1995) Evidence that carcinogenesis involves an imbalance between epigenetic high frequency initiation and suppression of promotion, PNAS 92, 1332-1336. CrossRef
Katayama, H., Matsuura, M., Endo, S., Hoshi, M., Ohtaki, M., Hayakawa, N. (2002) Reassessment of the cancer mortality risk among Hiroshima atomic-bomb survivors using a new dosimetry system, ABS2000D, compared with ABS93D, J. Radiat. Res. (Tokyo) 43, 53-64. CrossRef
Ko, M., Lao, X.Y., Kapadia, R., Elmore, E., Redpath, J.L. (2006) Neoplastic transformation in vitro by low doses of ionizing radiation: role of adaptive response and bystander effects, Mutat. Res. 597, 11-17. CrossRef
Krewski, D., Lubin, J.H., Zielinski, J.M., Alavanja, M., Catalan, V.S., Field, R.W., Klotz, J.B., Letourneau, E.G, Lynch, C.F., Lyon, J.I., Sandler, D.P., Schoenberg, J.B., Steck, D.J., Stolwijk, J.A., Weinberg, C., Wilcox, H.B. (2005) Residential radon and risk of lung cancer: a combined analysis of 7 North American case-control studies, Epidemiology 16, 137-145. CrossRef
Little, M.P., Muirhead, C.R. (1996) Evidence for curvilinearity in the cancer incidence dose-response in the Japanese atomic bomb survivors, Int. J. Radiat. Biol. 70, 83-94. CrossRef
Little, M.P., Muirhead, C.R. (2000) Derivation of low dose extrapolation factors from analysis of the curvature in the cancer incidence dose response in Japanese atomic bomb survivors, Int. J. Radiat. Biol. 76, 939-953. CrossRef
Liu, Z., Mothersill, C.E., McNeill, F.E., Lyng, F.M., Byun, S.H., Seymour, C.B., Prestwich, W.V. (2006) A dose threshold for a medium transfer bystander effect for a human skin cell line, Radiat. Res. 166, 19-23. CrossRef
Löbrich, M., Rief, N., Kuhne, M., Fleckenstein, J., Rube, C., Uder, M. (2005) In vivo formation and repair of DNA double-strand breaks after computed tomography examinations, Proc. Natl. Acad. Sci. USA 102, 8984-8989. CrossRef
Loucas, B.D., Eberle, R., Bailey, S.M. Cornforth, M.N. (2004) Influence of dose rate on the induction of simple and complex chromosome exchanges by gamma rays, Radiat. Res. 162, 339-349. CrossRef
Lyng, F.M., Seymour, C.B., Mothersill, C. (2002) Initiation of apoptosis in cells exposed to medium from the progeny of irradiated cells: a possible mechanism for bystander-induced genomic instability? Radiat. Res. 57, 365-370. CrossRef
Lyng, F.M., Maguire, P., McClean, B., Seymour, C., Mothersill, C. (2006a) The involvement of calcium and MAP kinase signaling pathways in the production of radiation-induced bystander effects, Radiat. Res. 165, 400-409. CrossRef
Lyng, F.M., Maguire, P., Kilmurray, N., Mothersill, C., Shao, C., Folkard, M., Prise, K.M. (2006b) Apoptosis is initiated in human keratinocytes exposed to signalling factors from microbeam irradiated cells, Int. J. Radiat. Biol. 82, 393-399. CrossRef
Marples, B., Wouters, B.G., Collis, S.J., Chalmers, A.J., Joiner, M.C. (2004) Low-dose hyper-radiosensitivity: a consequence of ineffective cell cycle arrest of radiation-damaged G2-phase cells, Radiat. Res. 161, 247-255. CrossRef
Meeting, report (2006) Low-Dose Radiation Risk Assessment Report, International Workshop on Low Dose Radiation Effects, Columbia University Medical Center, New York, April 3–4, 2006, Rad. Res. 166, 561-565.
Menard, C., Johann, D., Lowenthal, M. et al. (2006) Discovering clinical biomarkers of ionizing radiation exposure with serum proteomic analysis, Cancer Res. 66, 1844-1850. CrossRef
Mercier G., Berthault N., Mary J., Peyre J., Antoniadis A., Comet J.P., Cornuejols A., Froidevaux C., Dutreix M. (2004) Biological detection of low radiation doses by combining results of two microarray analysis methods, Nucleic Acids Res. 32(1), e12.
Mezei, G., Borugian, M.J., Spinelli, J.J., Wilkins, R., Abanto, Z., McBride, M.L. (2006) Socioeconomic status and childhood solid tumor and lymphoma incidence in Canada, Am. J. Epidemiol. 164, 170-175. CrossRef
Mifune, M., Sobue, T., Arimoto, H., Komoto, Y., Kondo, S., Tanooka, H. (1992) Cancer mortality survey in a spa area (Misasa, Japan) with a high radon background, Jpn J. Cancer Res. 83, 1-5. CrossRef
Miller, A.B., Howe, G.R., Sherman, G.J. et al. (1989) Mortality from breast cancer after irradiation during fluoroscopic examinations in patients being treated for tuberculosis, N. Engl. J. Med. 321, 1285-1289. CrossRef
Miller, R.C., Randers-Pehrson, G., Geand, C.R., Hall, E., Brenner, D.J. (1999) The oncogenic transforming potentiel of the passage of single alpha particles through mammalian cell nuclei, Proc. Natl. Acad. Sci. USA 96, 19-22. CrossRef
Mohan, A.K., Hauptmann, M., Linet, M.S. et al. (2002) Breast cancer mortality among female radiologic technologists in the United States, J. Natl. Cancer Inst. 94, 943-948. CrossRef
Mohan, A.K., Hauptmann, M., Freedman, D.M. et al. (2003) Cancer and other causes of mortality among radiologic technologists in the United States, Int. J. Cancer 103, 259-67. CrossRef
Mole, R.H. (1974) Antenatal irradiation and childhood cancer: causation or coincidence, Br. J. Cancer 30, 199-208. CrossRef
Monchaux G. (2004). Risk of fatal versus incidental lung cancer in radon exposed rats: a reanalysis of French date, Archv. Oncol. 12, 7-12.
Monchaux, G., Morlier, J.P., Altmeyer, S, Debroche, M., Morin, M. (1999) Influences of exposure rate on lung cancer induction in rats exposed to radon progeny, Radiat. Res. 152, S137-S140. CrossRef
Monson R.R., MacMahon B. (1984) “Prenatal X-ray exposure and cancer in children”, In Radiation carcinogenesis: Epidemiology and biological significance, J.D. Boice, J.F. Fraumeni (Eds). Raven Press, New York, pp. 97-105.
Mothersill, C., Seymour, C. (1997) Lethal mutations and genomic instability, Int. J. Radiat. Biol. 71, 751-758.
Mothersill, C., Seymour, C. (2001) Radiation-induced bystander effects: past history and future directions, Radiat. Res. 155, 759-67. CrossRef
Mothersill, C., Seymour, C. (2006a) Radiation-induced bystander and other non-targeted effects: novel intervention points in cancer therapy? Curr. Cancer. Drug. Targets 6, 447-454. CrossRef
Mothersill, C., Seymour, C.B. (2006b) Radiation-induced bystander effects and the DNA paradigm: an “out of field” perspective, Mutat. Res. 11, 5-10. CrossRef
Mueller, M.M., Fusening, N.E. (2004) Friends or foes. Bipolar effects of the tumour stroma in cancer, Nature Rev. 4, 839-849.
Nair, M.K., Nambi, K.S., Amma, N.S. et al. (1999) Population study in the high natural background radiation area in Kerala, Ind. Radiat. Res. 152, S145-S148. CrossRef
Naumburg, E., Belloco, R., Cnattingius, S. et al. (2002) Intrauterine exposure to diagnostic of X rays and risk of childhood leukemia subtypes, Radiat. Res. 156, 718-723. CrossRef
Noguchi, K., Shimizu, M., Anzai, Z. (1986) Correlation between natural radiation exposure and cancer mortality in Japan (I), J. Radiat. Res. 27, 191-212. CrossRef
Nyberg, U., Nilsson, B., Travis, L.B., Holm, L.E., Hall, P. (2002) Cancer incidence among Swedish patients exposed to radioactive thorotrast: a forty-year follow-up survey, Radiat. Res. 157, 419-425. CrossRef
Oppenheim, B.E., Griem, M.L., Meier, P. (1975) The effects of diagnostic X-ray exposure on the human fetus: an examination of the evidence, Radiology 114, 529-534. CrossRef
Park J.F. (1990) Inhaled plutonium oxide in dog, In “Pacific Northwest laboratory Report for 1989 to the DOE Office of Energy Research Part I: Biomedical Sciences”, Springfield, VA: National Technical Information Service, pp. 11-28, 101-107.
Park J.F. (1992) Inhaled plutonium oxide in dog, In “Pacific Northwest laboratory Report for 1991 to the DOE Office of Energy Research Part I: Biomedical Sciences”, Springfield, VA: National Technical Information Service.
Ponette, V., Le Pechoux, C., Deniaud-Alexandre, E., Fernet, M., Giocanti, N., Tourbez, H., Favaudon, V. (2000) Hyperfast early cell response to ionising radiation, Int. J. Rad. Oncol. Biol. 72, 1233-1243. CrossRef
Portess, D.I., Bauer, G., Hill, M.A., O’Neill P. (2007) Low-dose irradiation of nontransformed cells stimulates the selective removal of precancerous cells via intercellular induction of apoptosis, Cancer Res. 67, 1246-1253. CrossRef
Preston, D.L., Mattsson, A., Holmberg, E., Shore, R., Hildreth, N.G., Boice, J.D. (2002) Radiation effects on breast cancer risk: a pooled analysis of eight cohorts, Radiat. Res. 158, 220-235. CrossRef
Preston, D.L., Pierce, D.A., Shimizu, Y. et al. (2004) Effect of recent changes in atomic bomb survivor dosimetry on cancer mortality risk estimates, Radiat. Res. 162, 377-389. CrossRef
Raabe, O.G., Book, S.A. (1981) Dose-response relationship for bone tumors in beagle exposed to 226Ra and 90Sr, Health Phys. 40, 863-880. CrossRef
Raabe O.G., Book S.A., Parks N.J. (1983) Lifetime bone cancer response relationships in beagles and people from skeletal burdens of 226Ra and 90Sr, Health Phys. 44(Suppl 1), 33-48.
Radisky, D.C., Bissell, M.J. (2004) Cancer. Respect thy neighbor! Science 303, 774-775. CrossRef
Redpath, J.L. (2004) Radiation induced neoplastic transformation in vitro: evident for a protective effect at low doses of low LET, Rad. Cancer Metast. Rev. 23, 333-339. CrossRef
Rigaud, O., Moustacchi, E. (1996) Radioadaptation for gene mutation and the possible molecular mechanisms of the adaptive response, Mutat. Res. 358, 127-134. CrossRef
Rodvall, Y., Pershagen, G., Hrubec, Z., Ahlbom, A., Pedersen, N.L., Boice, J.D. (1990) Prenatal X-ray exposure and childhood cancer in Swedish twins, Int. J. Cancer 46, 362-365. CrossRef
Rodvall, Y., Hrubec, Z., Pershagen, G. et al. (1992) Childhood cancer among Swedish twins, Cancer Causes Control 3, 527-532. CrossRef
Roos W.P., Kaina B. (2006) DNA damage-induced cell death by apoptosis, Trends Mol. Med. 12, 440-450.
Rothkamm, K., Löbrich, M. (2003) Evidence for a lack of DNA double-strand break repair in human cells exposed to very low X-ray doses, Proc. Natl. Acad. Sci. USA 100, 5057-5062. CrossRef
Rowland R.E., Stehney A.F., Lucas H.F. (1983) Dose-reponse relationships for radium-induced bone sarcomas, Health Phys. 44(Suppl. 1), 15-31.
Rubino, C., de Vathaire, F., Shamsaldin, A., Labbe, M., Le, M.G. (2003) Radiation dose, chemotherapy, hormonal treatment and risk of second cancer after breast cancer treatment, Br. J. Cancer 89, 840-846. CrossRef
Samet J.M., Speizer F.E. (1993) Assessment of health effects in epidemiologic studies of air pollution, Environ. Health Persp. 101(Suppl 4), 149-154.
Sanders, C.L., Lauhala, K.E., McDonald, K.E. (1993) Lifespan studies in rats exposed to 239PuO2. III. Survival and lung tumors, Int. J. Radiat. Biol. 64, 417430. CrossRef
Scott, B. (2006) Risk of thyroid cancer after exposure to (131)I in childhood, Response Cardis E., Kesminienne A., J. Nat. Cancer Inst. 98, 561. CrossRef
Shilnikova, N.S., Preston, D.L., Ron, E. et al. (2003) Cancer mortality risk among workers at the Mayak nuclear complex, Radiat. Res. 159, 787-798. CrossRef
Shu, X.O., Potter, J.D., Linet, M.S., Severson, R.K., Han, D., Kersey, J.H., Neglia, J.P., Trigg, M.E., Robison, L.L. (2002) Diagnostic X-rays and ultrasound exposure and risk of childhood acute lymphoblastic leukemia by immunophenotype, Cancer Epidemiol. Biomarkers Prev. 11, 177-185.
Sigurdson, A.J., Doody, M.M., Rao, R.S. et al. (2003) Cancer incidence in the US radiologic technologists health study, 1983-1998, Cancer 97, 3080-3089. CrossRefPubMed
Sobue, T., Lee, V.S., Ye, W., Tanooka, H., Mifune, M., Suyama, A., Koga, T., Morishima, H., Kondo, S. (2000) Residential radon exposure and lung cancer risk in Misasa, Japan: a case-control study, J. Radiat. Res. (Tokyo) 41, 81-92. CrossRef
Spengler, R.F., Cook, D.H., Clarke, E.A., Olley, P.M., Newman, A.M. (1983) Cancer mortality following cardiac catheterization: a preliminary follow-up study on 4,891 irradiated children, Pediatrics 71, 235-239.
Stebbings, J.H., Lucas, H.F., Stehney, A.F. (1984) Mortality from cancers of major sites in female radium dial workers, Am. J. Ind. Med. 5, 435-459. CrossRef
Sugahara, T., Watanabe, M. (1994) Epigenetic nature of radiation cancinogenesis at low doses, Int. J. Occup. Med. Toxicol. 3, 129-136.
Tanooka, H. (2001) Threshold dose-response in radiation carcinogenesis: an approach from chronic beta-irradiation experiments and a review of non tumour doses, Int. J. Radiat. Biol. 77, 541-551. CrossRef
Tao, Z., Zha, Y., Akiba, S., Sun, Q. et al. (2000) Cancer mortality in the high background radiation areas of Yangjiang, China during the period between 1979 and 1995, J. Radiat. Res. (Tokyo) 41, 31-41. CrossRef
Thomas R.G. (1995) “Tumorigenesis in the US radium luminizers: how unsafe was this occupation?”, In Health Effects of Internally Deposited Radionuclides: Emphasis on Radium and Thorium, G. van Kaick, A. Karaoglou, A.M. Kellerer (Eds). World Scientific, London, Singapore, pp. 145-148.
Travis, L.B., Land, C.E., Andersson, M., Nyberg, U. (2001) Mortality after cerebral angiography with or without radioactive Thorotrast: an international cohort of 3, 143 two-year survivors, Radiat. Res. 156, 136-150. CrossRef
Travis, L.B., Hauptmann, M., Gaul, L.K. et al. (2003) Site-specific cancer incidence and mortality after cerebral angiography with radioactive thorotrast, Radiat. Res. 160, 691-706. CrossRef
Tubiana, M (2003) The carcinogenic effect of low doses: the validity of the linear nothreshold relationship, Int. J. Low Rad. 1, 1-31. CrossRef
Tubiana M., Aurengo A., Averbeck D., Bonnin A., Le Guen B., Masse R., Monier R., Valleron A.J., de Vathaire F. (2005) Académie Nationale de Médecine, Institut de France, Académie des Sciences, Rapport Conjoint n° 2, Relation dose-effet et estimation des risques cancérogènes des faibles doses des rayonnements ionisants (www.academiemedecine.fr/actualites/rapports.asp). Édition Nucleon, Paris, ISBN 2-84332-018-6, pp. 1-168.
Tubiana, M., Aurengo, A., Averbeck, D., Masse, R. (2006a) Recent reports on the effect of low doses of ionizing radiation and its dose-effect relationship, Radiat. Environ. Biophys. 44, 245-251. CrossRef
Tubiana, M., Aurengo, A., Averbeck, D., Masse, R. (2006b) The debate on the use of LNT for assessing the effects of low doses, J. Radiol. Prot. 26, 317-324. CrossRef
UNSCEAR (1994) United Nations Scientific Committee on the Effects of Atomic Radiation, Sources, effects and risks of ionising radiation, Report to the General Assembly, with Annexes, United Nations, E 94 IX 11, New York.
UNSCEAR (2000) United Nations Scientific Committee on the Effects of Atomic Radiation, Sources, effects and risks of ionising radiation, Report to the General Assembly, with Annexes, United Nations, New York.
Van Kaick G., Wesch H., Luhrs H., Lieberman D., Kaul A. (1991) Neoplastic diseases induced by chronic alpha irradiation. Epidemiological, biophysical and clinical results by the German Thoratrast study group, J. Radiat. Res. 32(Suppl 2), 20-33.
Vilenchik, M.M., Knudson, A.G. (2000) Inverse radiation dose-rate effects on somatic and germ-line mutations and DNA damage rates, Proc. Natl. Acad. Sci. USA 97, 5381-5386. CrossRef
Vilenchik, M.M., Knudson, A.G. (2003) Endogenous DNA double strand breaks: Productio, fidelity of repair, and induction of cancer, Proc. Natl. Acad. Sci. USA 100, 12871-12876. CrossRef
Vilenchik, M.M., Knudson, A.G. (2006) Radiation dose-rate effects, endogenous DNA damage, and signaling resonance, Proc. Natl. Acad. Sci. USA 103, 17874-17879. CrossRef
Wakeford, R., Little, M.P. (2003) Risk coefficients for childhood cancer after intrauterine irradiation: a review, Int. J. Radiat. Biol. 79, 293-309. CrossRef
Wang Z.Y., Boice J.D., Wein L.X. (1990) Thyroid nodularity and chromosome aberration among women in areas of high background radiation in China, J. Natl. Cancer Inst. 82, 478-485.
Wang, J.X., Zhang, L.A., Li, B.X. et al. (2002) Cancer incidence and risk estimation among medical X-ray workers in China 1950-1995, Health Phys. 82, 455-466. CrossRef
Wei, L., Sugahara, T. (2000) An introductory overview of the epidemiological study on the population at the high background radiation areas in Yangjiang, China, J. Radiat. Res. (Tokyo) 41, 1-7. CrossRef
Yang, F., Stenoien, D.M., Strittmatter, E.F. et al. (2006) Phosphoproteome profiling of human skin fibroblast cells in response to low- and high-dose irradiation, J. Proteome Res. 5, 1252-1260. CrossRef
Zeeb, H., Blettner, M., Langner, I. et al. (2003) Mortality from cancer and other causes among airline cabin attentants in Europe: a collaborative study in eight countries, Am. J. Epidemiol. 158, 35-46. CrossRef