Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T01:46:30.934Z Has data issue: false hasContentIssue false

The Younger Dryas Cold Event—Was It Synchronous Over the North Atlantic Region?

Published online by Cambridge University Press:  18 July 2016

Tomasz Goślar
Affiliation:
Radiocarbon Laboratory, Institute of Physics, Silesian Technical University, Krzywoustego 2, PL-44-100 Gliwice, Poland
Maurice Arnold
Affiliation:
Centre des Faibles Radioactivités, CNRS-CEA, F-91198 Gif sur Yvette, France
Mieczysław F. Pazdur
Affiliation:
Radiocarbon Laboratory, Institute of Physics, Silesian Technical University, Krzywoustego 2, PL-44-100 Gliwice, Poland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Determined independently from annually laminated ice cores and lake sediments, and German pines, the calendar ages of Younger Dryas (YD) boundaries significantly disagree with one another. 14C dates, plotted vs. calendar ages for samples from different sediments, also reveal distinct offsets. The adjustment of varve chronologies to synchronize the boundaries of the YD nearly cancels the discrepancies between 14C data, and supports the synchronism of the YD cold period over the North Atlantic region. However, the exact timing of the event cannot be estimated in this way.

Type
Papers from the Workshop on Pages Chronologies
Copyright
Copyright © The American Journal of Science 

References

Alley, R. B., Meese, D. A., Shuman, C. A., Gow, A. J., Taylor, K. C., Grootes, P. M., White, J. W. C., Ram, M., Waddington, E. D., Mayewski, P. A. and Zielinski, G. A. 1993 Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event. Nature 362: 527529.CrossRefGoogle Scholar
Ammann, B. and Lotter, A. F. 1989 Late-Glacial radiocarbon- and palynostratigraphy on the Swiss Plateau. Boreas 18: 109126.CrossRefGoogle Scholar
Bard, E., Arnold, M., Maurice, P., Duprat, J., Moyes, J. and Duplessy, J.-C. 1987 Retreat velocity of the North Atlantic polar front during the last deglaciation determined by 14C accelerator mass spectrometry. Nature 328: 791794.Google Scholar
Becker, B., Kromer, B. and Trimborn, P. 1991 A stable-isotope tree-ring timescale of the Late Glacial/Holocene boundary. Nature 353: 647649.Google Scholar
Dansgaard, W., Johnsen, S. J., Clausen, H., Dahl-Jensen, D., Gundestrup, N. S., Hammer, C. U., Hvidberg, C. S., Steffensen, J. P., Sveinbjornsdottir, A. E., Jouzel, J. and Bond, G. 1993 Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364: 218220.CrossRefGoogle Scholar
Dansgaard, W., White, J. W. C. and Johnsen, S. J. 1993 The abrupt termination of the Younger Dryas climate event. Nature 339: 532533.CrossRefGoogle Scholar
Edwards, R. L., Beck, J. W., Burr, G. S., Donahue, D. J., Chappell, J. M. A., Bloom, A. L., Druffel, E. R. M. and Taylor, F. W. 1993 A large drop in atmospheric 14C/12C and reduced melting in the Younger Dryas, documented with 230Th ages of corals. Science 260: 962968.CrossRefGoogle ScholarPubMed
Goslar, T., Arnold, M., Bard, E., Kuc, T., Pazdur, M. F., Ralska-Jasiewiczowa, M. and Tisnerat, N. (ms.) Variations of atmospheric 14C concentration at the Pleistocene/Holocene boundary. In preparation.Google Scholar
Goslar, T., Kuc, T., Ralska-Jasiewiczowa, M., Różański, K., Arnold, M., Bard, E., van Geel, B., Pazdur, M. F., Szeroczyńska, K., Wicik, B., Więckowski, K. and Walanus, A. 1993 High-resolution lacustrine record of the Late Glacial/Holocene transition in Central Europe. Quaternary Science Reviews 12: 287294.Google Scholar
Grootes, P. M., Stuiver, M., White, J. W. C., Johnsen, S. and Jouzel, J. 1993 Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature 366: 552554.Google Scholar
Hajdas, I. (ms.) 1993 Extension of the radiocarbon calibration curve by AMS dating of laminated sediments of Lake Soppensee and Lake Holzmaar. Ph.D. dissertation, Swiss Federal Institute of Technology, Zürich: 147 P.Google Scholar
Hajdas, I., Ivy, S. D., Beer, J., Bonani, G., Imboden, D., Lotter, A.F., Sturm, M. and Suter, M. 1993 AMS radiocarbon dating and varve chronology of Lake Soppensee: 6000 to 12 000 years BP. Climate Dynamics 9: 107116.Google Scholar
Johnsen, S. J., Clausen, H. B., Dansgaard, W., Fuhrer, K., Gundestrup, N., Hammer, C. U., Iversen, P., Jouzel, J., Stauffer, B. and Steffensen, J. P. 1992 Irregular glacial interstadials recorded in a new Greenland ice core. Nature 359: 311313.Google Scholar
Jouzel, J., Petit, J. R., Barkov, N. I., Barnola, J. M., Chapellaz, J., Ciais, P., Kotkyakov, V. M., Lorius, C., Petrov, V. N., Raynaud, D. and Ritz, C. 1992 The last deglaciation in Antarctica: Further evidence of a “Younger Dryas” type climatic event. in Bard, E. and Broecker, W. S., eds., The Last Deglaciation. Absolute and Radiocarbon Chronologies. NATO ASI Series I. Berlin, Springer-Verlag: 229266.Google Scholar
Kromer, B. and Becker, B. 1993 German oak and pine 14C calibration, 720O-9439 BC. in Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35(1): 125135.Google Scholar
Kudrass, H. R., Erlenkeuser, H., Vollbrecht, R. and Weiss, W. 1991 Global nature of the Younger Dryas cooling event inferred from oxygen isotope data from Sulu Sea cores. Nature 349: 406408.CrossRefGoogle Scholar
Lehman, S. J. and Keigwin, L. D. 1992 Sudden changes in North Atlantic circulation during the last deglaciation. Nature 356: 757762.Google Scholar
Levesque, A. J., Mayle, F. E., Walker, I. R. and Cwynar, L. C. 1993 A previously unrecognized late-glacial cold event in eastern North-America. Nature 361: 623626.Google Scholar
Lotter, A. F., Ammann, B., Beer, J., Hajdas, I. and Sturm, M. 1992 A step towards an absolute time-scale for the Late-Glacial: Annually laminated sediments from Soppensee (Switzerland). in Bard, E. and Broecker, W. S., eds., The Last Deglaciation. Absolute and Radiocarbon Chronologies. NATO ASI Series I. Berlin, Springer-Verlag: 4568.Google Scholar
Mayewski, P. A., Meeker, L. D., Whitlow, S., Twickler, M. S., Morrison, M. C., Alley, R. B., Bloomfield, P. and Taylor, K. 1993 The atmosphere during the Younger Dryas. Science 261: 195197.Google Scholar
Mott, J. R., Grant, D. R., Stea, R. and Occhietti, S. 1986 Late-glacial climatic oscillation in Atlantic Canada equivalent to the Allerød-Younger Dryas event. Nature 323: 247250.Google Scholar
Peteet, D. M., Vogel, J. S., Nelson, D. E., Southon, J. R., Nickmann, R. J. and Heusser, C. E. 1990 Younger Dryas climatic reversal in northeastern USA? AMS ages for an old problem. Quaternary Research 33: 219230.Google Scholar
Pons, A., de Beaulieu, J. L., Guiot, C. and Reille, M. 1987 The Younger Dryas in southwestern Europe: An abrupt climatic change as evidenced from pollen records. in Berger, W. H. and Labeyrie, L. D., eds., Abrupt Climatic Change. Dordrecht, Reidel Publishing Co.: 195208.Google Scholar
Roberts, N., Taieb, M., Barker, P., Damnati, B, Icole, M. and Williamson, D. 1993 Timing of the Younger Dryas event in East Africa from lake-level changes. Nature 366: 146148.Google Scholar
Strömberg, B. 1994 Younger Dryas deglaciation at Mt. Billingen, and clay varve dating of the Younger Dryas/Preboreal transition. Boreas: 177193.Google Scholar
Taylor, K. C., Hammer, C. U., Alley, R. B., Clausen, H. B., Dahl-Jensen, D., Gow, A. J., Gundestrup, N. S., Kipfstuhl, J., Moore, J. C. and Waddington, E. D. 1993a Electrical conductivity measurements from the GISP2 and GRIP Greenland ice cores. Nature 366: 549552.Google Scholar
Taylor, K. C., Lamorey, G. W., Doyle, G. A., Alley, R. B., Grootes, P. M., Mayewski, P. A., White, J. W. C. and Barlow, L. K. 1993b The “flickering switch” of late Pleistocene climate change. Nature 361: 432436.Google Scholar
van den Bogaard, P. and Schmincke, U. 1985 Laacher See tephra: A widespread isochronous late Quaternary tephra layer in central and northern Europe. Geological Society of America Bulletin 96: 15541571.2.0.CO;2>CrossRefGoogle Scholar
van Geel, B. and van der Hammen, T. 1973 Upper Quaternary vegetational and climatic sequence of the Fuquene area (eastern Cordillera, Colombia). Palaeogeography, Palaeoclimatology, Palaeoecology 14: 992.Google Scholar
Watts, W. A. 1980 Regional variation in the response of vegetation of Lateglacial climatic events in Europe. in Lowe, J. J., Gray, J. M. and Robinson, J. E., eds., Studies in the Late Glacial of North-West Europe. Oxford, Pergamon Press: 122.Google Scholar
Wohlfarth, B., Björck, S. and Possnert, G. 1995 The Swedish time scale: A potential calibration tool for the radiocarbon time scale during the Late Weichselian. in Harkness, D. D., Miller, B. F. and Scott, E. M., eds., Proceedings of the 15th International 14C Conference. Radiocarbon 37(3): in press.Google Scholar
Wohlfarth, B., Björck, S., Possnert, G., Lemdahl, G., Brunnberg, L., Ising, J., Olsson, S. and Svensson, N.-O. 1993 AMS dating Swedish varved clays of the last glacial/intergacial transition and the potential/difficulties of calibrating Late Weichselian “absolute” chronologies. Boreas 22: 113128.Google Scholar
Zolitschka, B., Haverkamp, B. and Negendank, J. F. W. 1992 Younger Dryas oscillation - varve dated palynological, paleomagnetic and microstratigraphic records from Lake Holzmaar, Germany. in Bard, E. and Broecker, W. S., eds., The Last Deglaciation. Absolute and Radiocarbon Chronologies. NATO ASI Series I. Berlin, Springer-Verlag: 81102.Google Scholar