Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-19T00:09:58.277Z Has data issue: false hasContentIssue false

Woce Radiocarbon IV: Pacific Ocean Results; P10, P13N, P14C, P18, P19 & S4P

Published online by Cambridge University Press:  18 July 2016

Robert M Key
Affiliation:
Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey 08544 USA. Email: [email protected].
Paul D Quay
Affiliation:
Department of Oceanography, University of Washington, Seattle, Washington 98195 USA
Peter Schlosser
Affiliation:
Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York 10964 USA
A P McNichol
Affiliation:
National Ocean Sciences AMS Facility, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543 USA
KF von Reden
Affiliation:
National Ocean Sciences AMS Facility, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543 USA
Robert J Schneider
Affiliation:
National Ocean Sciences AMS Facility, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543 USA
Kathy L Elder
Affiliation:
National Ocean Sciences AMS Facility, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543 USA
Minze Stuiver
Affiliation:
Quaternary Isotope Laboratory, University of Washington, Seattle, Washington 98195 USA
H Göte Östlund
Affiliation:
Tritium Laboratory Observatory, RSMAS, University of Miami, Miami, Florida 33149 USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The World Ocean Circulation Experiment, carried out between 1990 and 1997, provided the most comprehensive oceanic survey of radiocarbon to date. Approximately 10,000 samples were collected in the Pacific Ocean by U.S. investigators for both conventional large volume p counting and small volume accelerator mass spectrometry analysis techniques. Results from six cruises are presented. The data quality is as good or better than previous large-scale surveys. The 14C distribution for the entire WOCE Pacific data set is graphically described using mean vertical profiles and sections, and property-property plots.

Type
Special Section
Copyright
Copyright © 2002 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Bien, GS, Rakestraw, NW, Suess, HE. 1965. Radiocarbon in the Pacific and Indian Oceans and its relation to deep water movements. Limnol. Oceanogr. 10 (Supplement): R25R37.Google Scholar
Brewer, PG, Wong, GTF, Bacon, MP, Spencer, DW. 1975. An oceanic calcium problem? Earth Planet. Sci. Lett. 26:81–7.Google Scholar
Broecker, WS, Peng, T-H. 1974. Gas exchange rates between air and sea. Tellus 26:2135.Google Scholar
Broecker, WS, Peng, T-H, Takahashi, T. 1980. A strategy for the use of bomb-produced radiocarbon as a tracer for the transport of fossil fuel CO2 into the deep-sea source regions. Earth Planet. Sci. Lett. 49:463–8.Google Scholar
Broecker, WS, Peng, T-H, Östlund, G, Stuiver, M. 1985. The distribution of bomb radiocarbon in the ocean. J. Geophysical Research 90(C4):6953–70.Google Scholar
Broecker, WS, Blanton, S, Smethie, WM Jr, Östlund, G. 1991. Radiocarbon decay and oxygen utilization in the deep Atlantic Ocean. Global Biogeochemical Cycles. 5(1):87117.CrossRefGoogle Scholar
Broecker, WS, Sutherland, S, Smethie, W, Peng, T-H, Östlund, G. 1995. Oceanic radiocarbon: separation of the natural and bomb components. Global Biogeochemical Cycles 9(2):263–88.Google Scholar
Broecker, WS, Peacock, S, Walker, S, Weiss, R, Fahrbach, E, Schroeder, M, Mikolajewicz, U, Heinze, C, Key, R, Peng, T-H, Rubin, S. 1998. How much deep water is formed in the Southern Ocean? J. Geophys. Res., 103(C8):15,83344.Google Scholar
Chambers, JM, Hastie, TJ. 1991. Statistical Models in S p 309–76.Google Scholar
Cleveland, WS, Devlin, SJ. 1988. Locally-weighted regression: an approach to regression analysis by local fitting. J. Am. Statist. Assoc. 83:596610.Google Scholar
Cleveland, WS, Grosse, E. 1991. Computational methods for local regression. Statistics and Computing 1.Google Scholar
Craig, H. 1969. Abyssal carbon and radiocarbon in the Pacific. J. Geophys. Res. 74(23):5491–506.Google Scholar
Craig, H. 1971 Son of abyssal carbon. J. Geophys. Res. 76(21):5133–9.Google Scholar
Dickson, AG, Anderson, GC, Afghan, JD. 2001. Reference materials for oceanic CO2 analysis: 1. Preparation, distribution, and use. Mar. Chem. Submitted Google Scholar
Dickson, AG, Afghan, JD, Anderson, GC. 2001. Reference materials for oceanic CO2 analysis: 2. A method for the certification of total alkalinity. Mar. Chem. Submitted.Google Scholar
Elder, KL, McNichol, AP, Gagnon, AR. 1998. Reproducibility of seawater, inorganic and organic carbon 14C results at NOSAMS. Radiocarbon 40(1):223–30.Google Scholar
Fiadeiro, ME. 1982. Three-dimensional modeling of tracers in the deep Pacific Ocean. II, Radiocarbon and the circulation, J. Mar. Res. 40:537–50.Google Scholar
Fine, RA. 1993. Circulation of Antarctic intermediate water in the South Indian Ocean. Deep-Sea Res. 40(10):2021–42.Google Scholar
Gruber, N. 1998. Anthropogenic CO, in the Atlantic Ocean. Global. Biogeochem. Cycles 10:809–37.Google Scholar
Gruber, N, Sarmiento, JL, Stacker, TF. 1996. An improved method for detecting anthropogenic CO2 in the oceans. Global Biogeochemical Cycles 10:809–37.Google Scholar
Guilderson, TP, Caldeira, K, Duffy, PB. 2000. Radiocarbon as a diagnostic tracer in ocean and carbon cycle modeling. Global Biogeochemical Cycles 14(3):887902.Google Scholar
Keller, K, Slater, RD, Bender, M, Key, RM. 2001. Decadal scale trends in North Pacific nutrient and oxygen concentrations: Biological or physical explanation. Deep-Sea Research. In press.Google Scholar
Key, RM. 1996. 1996 WOCE Pacific radiocarbon program. Radiocarbon 38(2):415–23.Google Scholar
Key, RM. 1998. Radiocarbon in the North Pacific: what we have leaned since GEOSECS. Invited talk. Seventh Annual PICES Meeting, Fairbanks, Alaska. October 1998.Google Scholar
Key, RM. 2001. Ocean process tracers: radiocarbon. In: Steele, J, Thorpe, S, Turekian, K, editors. Encyclopedia of Ocean Sciences. London: Academic Press, Ltd. 23382353.Google Scholar
Key, RM, Quay, PD, Jones, GA, McNichol, AP, von Reden, KF, Schneider, RJ. 1996. WOCE Radiocarbon I: Pacific Ocean Reults; P6, P16 & P17. Radiocarbon 38(3):425518.Google Scholar
Rubin, S., Key, RM, 2002. Separating natural and bomb-produced radiocarbon in the ocean: the potential alkalinity method. Global Biogeochem. Cycles. In press.CrossRefGoogle Scholar
Leboucher, V, Orr, J, Jean-Baptiste, P, Arnold, M, Monfray, P, Tisnérat-Laborde, N, Poisson, A, Duplessy, J-C. 1999. Oceanic radiocarbon between Antarctica and South Africa along WOCE section 16 at 30$dGE. Radiocarbon 41(1):5173.Google Scholar
Le Traon, PY. 1990. A method for optimal analysis of fields with spatially variable mean. J. Geophys. Res. 95:13,543–7.Google Scholar
Nydal, R. 1968. Further investigations on the transfer of radiocarbon in nature. J. Geophys. Res. 73(12):3617–35.Google Scholar
Nydal, R, Gislefoss, JS. 1996. Further application of bomb 14C as a tracer in the atmosphere and ocean. Radiocarbon 38(3):389406.CrossRefGoogle Scholar
Orsi, AH, Johnson, GC, Bullister, JL. 1999. Circulation, mixing, and production of Antarctic Bottom Water. Prog. Oceanography 43:55109.Google Scholar
Ortiz, JD, Mix, AC, Wheeler, P, Key, RM. 2000. An estimate of the anthropogenic offset of oceanic δ≪CDIC based on the ventilation of the California Current at 42$dGN. Global Biogeochem. Cycles 14(3):917–30.Google Scholar
Ostlund, HG, Rooth, CGH. 1990. The North Atlantic tritium and radiocarbon transients 1972-1983. J. Geophys. Res. 95(C11):20,14765.CrossRefGoogle Scholar
Ostlund, HG, Stuiver, M. 1980. GEOSECS Pacific radiocarbon. Radiocarbon 22(1):2553.Google Scholar
Peng, T-H, Key, RM, Ostlund, HG. 1998. Temporal variations of bomb radiocarbon inventory in the Pacific Ocean. Marine Chem. 60:314.Google Scholar
Roemmich, D. 1983. Optimal estimation of hydrographic station data and derived fields. J. Phys. Oceanography 13:1544–9.2.0.CO;2>CrossRefGoogle Scholar
Sabine, CL, Key, RM, Johnson, KM, Millero, FJ, Poisson, A, Sarmiento, JL, Wallace, DWR, Winn, CD. 1999. Anthropogenic CO2 inventory of the Indian Ocean. Global Biogeochem. Cycles 13(1):179–98.Google Scholar
Schlosser, P, Bullister, JL, Bayer, R. 1991. Studies of deep water formation and circulation in the Weddell Sea using natural and anthropogenic tracers. Mar. Chem. 35:97122.Google Scholar
Schlosser, P, Kromer, B, Weppernig, R, Loosli, HH, Bayer, R, Bonani, G, Suter, M. 1994. The distribution of 14C and 39Ar in the Weddell Sea. J. Geophys. Res. 99(C5):10,27587.CrossRefGoogle Scholar
Smethie, WM Jr, Fine, RA. 2001. Rates of North Atlantic Deep Water formation calculated from chlorofluoro-carbon inventories, Deep-Sea Res. I 48:189215.CrossRefGoogle Scholar
Sonnerup, RE, Quay, PD, Bullister, JL. 1999. Thermocline ventilation and oxygen utilization rates in the subtropical North Pacific based on CFC distributions during WOCE. Deep-Sea Res. I 46:777805.Google Scholar
Stuiver, M. 1980. Workshop on 14C data reporting. Radiocarbon 22(3):964966.Google Scholar
Stuiver, M, Polach, H. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355363.Google Scholar
Stuiver, M, Quay, PD, Ostlund, HG. 1983. Abyssal water carbon-14 distribution and the age of the World Ocean. Science 219:849–51.Google Scholar
Stuiver, M, Östlund, G, Key, RM, Reimer, PJ. 1996. Large volume WOCE radiocarbon sampling in the Pacific Ocean. Radiocarbon 38(2):519–61.Google Scholar
Stuiver, M, Reimer, PJ, Braziunas, TF. 1998. High-precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon 40(3):1127–51.Google Scholar
Suess, HE, Goldberg, E. 1971. Comments on paper by H. Craig, “Abyssal carbon and radiocarbon in the Pacific”. J. Geophys. Res. 76(21):5131–2.CrossRefGoogle Scholar
Toggweiler, JR, Key, RM. 2001. Thermohaline circulation. In: Steele, J, Thorpe, S, Turekian, K, editors. Encyclopedia of ocean sciences. London: Academic Press, Ltd. 29412947.CrossRefGoogle Scholar
Toggweiler, JR, Samuels, B. 1993. New radiocarbon constraints on the upwelling of abyssal water to the ocean's surface. In: Hermann, M, editor. The global carbon cycle. NATO ASI Series. Volume I15. Berlin & Heidelberg: Springer-Verlag. p 333–66.Google Scholar
Toggweiler, JR, Dixon, K, Bryan, K. 1989. Simulations of radiocarbon in a coarse-resolution World Ocean model 1. Steady state prebomb distributions. J. Geophys. Res. 94(C6):8217–42.Google Scholar
Toggweiler, JR, Dixon, K, Broecker, WS. 1991. The Peru upwelling and the ventilation of the South Pacific thermocline. J. Geophysical Research 96(C11):20,46797.Google Scholar
Tsunogai, S, Watanabe, S, Honda, M, Aramaki, T. 1995. North Pacific Intermediate Water studied chiefly with radiocarbon. J. Oceanography 51:519–36.Google Scholar
von Reden, KF, Peden, JC, Schneider, RJ, Bellino, M, Donoghue, J, Elder, KL, Gagnon, AR, Long, P, McNichol, AP, Morin, T, Stuart, D, Hayes, JM, Key, RM. 1999. High-precision measurements of 14C as a circulation tracer in the Pacific, Indian, and Southern Oceans with accelerator mass spectrometry. In: Shepard, K, editor. American Institute of Physics, conference proceedings series, 8th International Conference on Heavy Ion Accelerator Technology. Woodbury, New York. p 410–21.Google Scholar
Walker, SJ, Weiss, RF, Salameh, P. 2000. Reconstructed histories of the annual mean atmospheric mole fractions for the halo carbons CFC–11, CFC–12, CFC–113 and carbon tetrachloride. J. Geophys. Res. 105(C6):14,28596.Google Scholar
Warner, MJ, Weiss, RF. 1988. Solubilities of chlorofluorocarbons 11 and 12 in water and seawater. Deep-Sea Res. 32:1485–97.Google Scholar
Warner, MJ, Bullister, JL, Wisegarver, DP, Gammon, RH, Weiss, RF. 1996. Basin-wide distributions of chlorofluorocarbons CFC-11 and CFC-12 in the North Pacific 1985-1989. J. Geophys. Res. 101(C9):20525–42.Google Scholar
Warren, BA, Owens, WB. 1988. Deep currents in the central Subarctic Pacific Ocean. J. Phys. Ocean. 18:529–51.2.0.CO;2>CrossRefGoogle Scholar