Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T07:53:24.075Z Has data issue: false hasContentIssue false

WOCE AMS Radiocarbon I: Pacific Ocean Results (P6, P16 and P17)

Published online by Cambridge University Press:  18 July 2016

Robert M. Key
Affiliation:
Ocean Tracer Laboratory, Department of Geosciences, Princeton University, Princeton, New Jersey 08544 USA
Paul D. Quay
Affiliation:
Department of Oceanography, University of Washington, Seattle, Washington 98195 USA
Glenn A. Jones
Affiliation:
National Ocean Sciences AMS Facility, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543 USA
A. P. McNichol
Affiliation:
National Ocean Sciences AMS Facility, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543 USA
K. F. Von Reden
Affiliation:
National Ocean Sciences AMS Facility, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543 USA
Robert J. Schneider
Affiliation:
National Ocean Sciences AMS Facility, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543 USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

AMS radiocarbon results from the World Ocean Circulation Experiment in the Pacific Ocean show dramatic changes in the inventory and distribution of bomb-produced 14C since the time of the GEOSECS survey (8/73–6/74). Near-surface Δ14C values for the eastern portion of both the northern and southern subtropical gyres decreased by 25–50‰, with the change being greater in the north. Equatorial near-surface values have increased by ca. 25‰. Changes in the 250–750-m depth range are dramatically different between the northern and southern basins. The intermediate and mode waters of the southern basin have increased by as much as 75‰ since GEOSECS. Waters of similar density in the northern hemisphere are not exposed to the Southern Ocean circulation regime and are significantly less ventilated, showing maximum changes of ca. 50‰.

Type
14C Cycling and the Oceans
Copyright
Copyright © the Arizona Board of Regents on behalf of the University of Arizona 

References

REFERENCES

Broecker, W. S. and Peng, T.-H. 1974 Gas exchange rates between air and sea. Tellus 26: 2135.Google Scholar
Broecker, W. S., Peng, T.-H., Östlund, G. and Stuiver, M. 1985 The distribution of bomb radiocarbon in the ocean. Journal of Geophysical Research. 90(C4): 69536970.CrossRefGoogle Scholar
Broecker, W. S., Sutherland, S., Smethie, W., Peng, T.-H. and Östlund, G. 1995 Oceanic radiocarbon: Separation of the natural and bomb components. Global Biogeochemical Cycles 9(2): 263288.CrossRefGoogle Scholar
Chambers, J. M. and Hastie, T. J. 1991 Statistical Models in S. Pacific Grove, California, Wadsworth & Brooks: 608 p.Google Scholar
Chambers, J. M., Cleveland, W. S., Kleiner, B. and Tukey, P. A. 1983 Graphical Methods for Data Analysis. Belmont, California, Wadsworth: 395 p.Google Scholar
Cleveland, W. S. 1979 Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association 74: 829836.CrossRefGoogle Scholar
Cleveland, W. S. and Devlin, S. J. 1988 Locally-weighted regression: An approach to regression analysis by local fitting. Journal of the American Statistical Association 83: 596610.CrossRefGoogle Scholar
Key, R. M. 1991 Radiocarbon. In WOCE Operations Manual. WHP Office Report WHPO91–1. Woods Hole, Massachusetts, Woods Hole Oceanographic Institute.Google Scholar
Key, R. M. 1991b Large volume sampling. In WOCE Operations Manual. WHP Office Report WHPO91–1. Woods Hole, Massachusetts, Woods Hole Oceanographic Institute.Google Scholar
Key, R.M. 1996 WOCE Pacific radiocarbon program. Radiocarbon , this issue.CrossRefGoogle Scholar
McNichol, A. P., Gagnon, A. R., Jones, G. A. and Osborne, E. A. 1992 Illumination of a black box: Gas composition changes during graphite target preparation for AMS. In Long, A. and Kra, R. S., eds., Proceedings of the 14th International 14C Conference. Radiocarbon 34(3): 321329.CrossRefGoogle Scholar
McNichol, A. P., Jones, G. A., Hutton, D. L. Gagnon, A. R. and Key, R. M. 1994 The rapid preparation of seawater ∑CO2 for radiocarbon analysis at the National Ocean Sciences AMS Facility. Radiocarbon 36(2): 273–246.CrossRefGoogle Scholar
Osborne, E. A., McNichol, A. P., Gagnon, A. R., Hutton, D. L. and Jones, G. A. 1994 Internal and external checks in the NOSAMS Sample Preparation Laboratory for target quality and homogeneity. Nuclear Instruments and Methods in Physics Research B92: 158161.CrossRefGoogle Scholar
Östlund, H. G. and Rooth, C. G. H. 1990 The North Atlantic tritium and radiocarbon transients 1972–1983. Journal of Geophysical Research 95(C11): 20,14720,165.CrossRefGoogle Scholar
Östlund, H. G. and Stuiver, M. 1980 GEOSECS Pacific radiocarbon. Radiocarbon 22(1): 2553.CrossRefGoogle Scholar
Peng, T.-H., Key, R. M. and Östlund, H. G. 1996 Temporal variations of bomb radiocarbon inventory in the Pacific Ocean. Marine Chemistry , in press.Google Scholar
Quay, P. D., Stuiver, M. and Broecker, W. S. 1983 Upwelling rates for the equatorial Pacific Ocean derived from the bomb 14C distribution. Journal of Marine Research 41: 769792.CrossRefGoogle Scholar
Schneider, R. J., McNichol, A P., Nadeau, M. J. and von Reden, K. F. 1995 Measurements of the Oxalic Acid I / Oxalic Acid II ratio as a quality control parameter at NOSAMS. In Cook, G. T., Harkness, D. D., Miller, B. F. and Scott, E. M., eds., Proceedings of the 15th International 14C Conference. Radiocarbon 37(2): 693696.CrossRefGoogle Scholar
Stuiver, M. 1980 Workshop on 14C reporting. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 10th International 14C Conference. Radiocarbon 22(3):964966.CrossRefGoogle Scholar
Stuiver, M. and Robinson, S. W. 1974 University of Washington GEOSECS North Atlantic carbon-14 results. Earth and Planetary Science Letters 23: 8790.CrossRefGoogle Scholar
Stuiver, M., Robinson, S. W., Östlund, H. G. and Dorsey, H. G. 1974 Carbon-14 calibration between the University of Washington and the University of Miami GEOSECS laboratories. Earth and Planetary Science Letters 3: 6568.CrossRefGoogle Scholar
Stuiver, M., Östlund, G., Key, R. M. and Reimer, P. J. Large-volume WOCE radiocarbon sampling in the Pacific Ocean. Radiocarbon , this issue.Google Scholar
Talley, L. 1993 Distribution and formation of North Pacific Intermediate Water. Journal of Physical Oceanography 23: 517537.2.0.CO;2>CrossRefGoogle Scholar
Toggweiler, J. R., Dixon, K. and Bryan, K. 1989 Simulations of radiocarbon in a coarse-resolution world ocean model I. Steady state pre-bomb distributions. Journal of Geophysical Research 94(C6): 82178242.CrossRefGoogle Scholar
Toggweiler, J. R., Dixon, K. and Broecker, W. S. 1991 The Peru upwelling and the ventilation of the South Pacific thermocline. Journal of Geophysical Research 96(C11): 20,46720,497.CrossRefGoogle Scholar
Vogel, J. S., Southon, J. R. and Nelson, D. E. 1987 14C background levels in an accelerator mass spectrometry system. Radiocarbon 29: 323333.CrossRefGoogle Scholar