Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-05T12:32:49.390Z Has data issue: false hasContentIssue false

Wiggle-Matching Using Known-Age Pine from Jermyn Street, London

Published online by Cambridge University Press:  18 July 2016

Cathy Tyers
Affiliation:
Department of Archaeology, University of Sheffield, West Court, 2 Mappin Street, Sheffield S1 4DT, England, United Kingdom
Jane Sidell*
Affiliation:
English Heritage, 1 Waterhouse Square, 138-42 Holborn, London EC1N 2ST, England, United Kingdom
Johannes Van der Plicht
Affiliation:
Centre for Isotope Research, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
Peter Marshall
Affiliation:
Chronologies, 25 Onslow Road, Sheffield, S11 7AF, England, United Kingdom
Gordon Cook
Affiliation:
Scottish Universities Environmental Research Centre (SUERC), Scottish Enterprise Technology Park, East Kilbride G75 0QF, Scotland, United Kingdom
Christopher Bronk Ramsey
Affiliation:
Research Laboratory for Archaeology, University of Oxford, Dyson Perrins Building, South Parks Road, Oxford OX1 3QY, England, United Kingdom
Alex Bayliss
Affiliation:
English Heritage, 1 Waterhouse Square, 138-42 Holborn, London EC1N 2ST, England, United Kingdom
*
Corresponding author. Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A slice of pine from the period covered by single-year calibration data (Stuiver 1993) was selected to serve as part of the quality assurance procedures of the English Heritage radiocarbon dating program, following successful wiggle-matching of 14C measurements from structural 15th century English oak timbers (Hamilton et al. 2007). The timber selected was a roofing element from a house on Jermyn Street, central London, demonstrated by dendrochronology to have been felled in AD 1670. Eighteen single-ring samples were dated by the 14C laboratories at Groningen, Oxford, and SUERC: each laboratory was sent a random selection of 6 samples. This approach was intended to mimic the mix of samples and relative ages incorporated into Bayesian chronological models during routine project research. This paper presents the results of this study.

Type
14C Chronologies, Dendrochronology, Wiggle-Matching, and Calibration Tools
Copyright
Copyright © 2009 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Aerts-Bijma, AT, Meijer, HAJ, van der Plicht, J. 1997. AMS sample handling in Groningen. Nuclear Instruments and Methods in Physics Research B 123(1–4): 221–5.CrossRefGoogle Scholar
Aerts-Bijma, AT, van der Plicht, J, Meijer, HAJ. 2001. Automatic AMS sample combustion and CO2 collection Radiocarbon 43(2A):293–8.CrossRefGoogle Scholar
Arnold, A, Bayliss, A, Cook, G, Goodall, J, Hamilton, WD, Howard, R, Litton, C, van der Plicht, J. 2006. Grey Mare's Tail Tower, Warkworth Castle, Warkworth, near Alnwick, Northumberland: Scientific Dating of Timbers. English Heritage Research Department Report 34/2006.Google Scholar
Bayliss, A, Bronk Ramsey, C. 2004. Pragmatic Bayesians: a decade integrating radiocarbon dates into chronological models. In: Buck, CE, Millard, AR, editors. Tools for Constructing Chronologies: Tools for Crossing Disciplinary Boundaries. London: Springer. p 2541.CrossRefGoogle Scholar
Bayliss, A, Bronk Ramsey, C, Hamilton, WD, van der Plicht, J. 2006. Radiocarbon Wiggle-Matching of the Second Floor of the Bell Tower at the Church of St Andrew, Wissett, Suffolk. English Heritage Research Department Report 32/2006.Google Scholar
Bayliss, A, Bronk Ramsey, C, Cook, G, van der Plicht, J. 2007a. Radiocarbon Dates from Samples Funded by English Heritage under the Aggregates Levy Sustainability Fund 2002–4. English Heritage: Swindon.Google Scholar
Bayliss, A, Bronk Ramsey, C, van der Plicht, J, Whittle, A. 2007b. Bradshaw and Bayes: towards a timetable for the Neolithic. Cambridge Archaeological Journal 17(Supplement S1):128.CrossRefGoogle Scholar
Bayliss, A, Cook, G, Bronk Ramsey, C, van der Plicht, J, McCormac, G. 2008. Radiocarbon Dates from Samples Funded by English Heritage under the Aggregates Levy Sustainability Fund 2004–2007. Swindon: English Heritage.Google Scholar
Bayliss, A, Bronk Ramsey, C, Cook, G, Hamilton, WD, van der Plicht, J, Tyers, C. Forthcoming. Cathedral Church of St Peter and St Wilfred, Ripon, North Yorkshire: Scientific Dating of Timbers from the Nave Roof and Ceiling. English Heritage Research Department Report Series.Google Scholar
Bronk Ramsey, C. 1995. Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37(2):425–30.CrossRefGoogle Scholar
Bronk Ramsey, C. 1998. Probability and dating. Radiocarbon 40(1):461–74.Google Scholar
Bronk Ramsey, C. 2001. Development of the radiocarbon calibration program. Radiocarbon 43(2A):355–63.CrossRefGoogle Scholar
Bronk Ramsey, C. 2008. Radiocarbon dating: revolutions in understanding. Archaeometry 50(2):249–75.CrossRefGoogle Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337–60.CrossRefGoogle Scholar
Bronk Ramsey, C, van der Plicht, J, Weninger, B. 2001. ‘Wiggle matching’ radiocarbon dates. Radiocarbon 43(2A):381–9.CrossRefGoogle Scholar
Bronk Ramsey, C, Higham, T, Leach, P. 2004. Towards high-precision AMS: progress and limitations. Radiocarbon 46(1):1724.CrossRefGoogle Scholar
Bronk Ramsey, C, Buck, CE, Manning, SW, Reimer, P, van der Plicht, H. 2006. Developments in radiocarbon calibration for archaeology. Antiquity 80(310):783–98.Google Scholar
Buck, CE, Blackwell, PG. 2004. Formal statistical models for estimated radiocarbon calibration curves. Radiocarbon 46(3):1093–102.CrossRefGoogle Scholar
Christen, JA, Litton, CD. 1995. A Bayesian approach to wiggle-matching. Journal of Archaeological Science 22(6):719–25.CrossRefGoogle Scholar
English Heritage. 1998. Dendrochronology: Guidelines on Producing and Interpreting Dendrochronological Dates. London: English Heritage.Google Scholar
Galimberti, M, Bronk Ramsey, C, Manning, SW. 2004. Wiggle-match dating of tree-ring sequences. Radiocarbon 46(2):917–24.CrossRefGoogle Scholar
Groves, C. 2000. Belarus to Bexley and beyond: dendrochronology and dendroprovenancing of conifer timbers. Vernacular Architecture 31:5966.CrossRefGoogle Scholar
Groves, C, Locatelli, C. 2005. Tree-Ring Analysis of Conifer Timbers from 107 Jermyn Street, City of Westminster, London. English Heritage Centre for Archaeology Report 67/2005.Google Scholar
Hamilton, WD, Bayliss, A, Menuge, A, Bronk Ramsey, C, Cook, G. 2007. “Rev Thomas Bayes: Get Ready To Wiggle” – Bayesian modelling, radiocarbon wiggle-matching, and the North Wing of Baguley Hall. Vernacular Architecture 38:8797.CrossRefGoogle Scholar
Hoper, ST, McCormac, FG, Hogg, AG, Higham, TFG, Head, MJ. 1998. Evaluation of wood pre-treatment on oak and cedar. Radiocarbon 40(1):4550.CrossRefGoogle Scholar
Kromer, B, Manning, SW, Kuniholm, PI, Newton, MW, Spurk, M, Levin, I. 2001. Regional 14CO2 offsets in the troposphere: magnitude, mechanism, and magnitude. Science 294(5551):2529–32.CrossRefGoogle ScholarPubMed
Levin, I, Hesshaimer, V. 2000. Radiocarbon—a unique tracer of global carbon cycle dynamics. Radiocarbon 21(1):6980.CrossRefGoogle Scholar
Mook, WG. 1986. Business Meeting: recommendations/resolutions adopted by the Twelfth International Radiocarbon Conference. Radiocarbon 28(2A):799.CrossRefGoogle Scholar
Mook, WG, Waterbolk, HT. 1985. Radiocarbon Dating, Handbook for Archaeologists, 3. Strasbourg: European Science Foundation.Google Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Bertrand, CJH, Blackwell, PG, Buck, CE, Burr, GS, Cutler, KB, Damon, PE, Edwards, RL, Fairbanks, RG, Friedrich, M, Guilderson, TP, Hogg, AG, Hughen, KA, Kromer, B, McCormac, G, Manning, S, Bronk Ramsey, C, Reimer, RW, Remmele, S, Southon, JR, Stuiver, M, Talamo, S, Taylor, FW, van der Plicht, J, Weyhenmeyer, CE. 2004. IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46(3):1029–58.Google Scholar
Scott, EM, editor. 2003. The 3rd International Radiocarbon Intercomparison (TIRI) and the 4th International Radiocarbon Intercomparison (FIRI). Radiocarbon 45(2):135408.Google Scholar
Slota, PJ Jr, Jull, AJT, Linick, TW, Toolin, LJ. 1987. Preparation of small samples for 14C accelerator targets by catalytic reduction of CO. Radiocarbon 29(3):303–6.CrossRefGoogle Scholar
Stuiver, M. 1993. A note on single-year calibration of the radiocarbon timescale AD 1510–1954. Radiocarbon 35(1):6772.CrossRefGoogle Scholar
Stuiver, M, Kra, RS. 1986. Editorial comment. Radiocarbon 28(2B):ii.Google Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355–63.CrossRefGoogle Scholar
Stuiver, M, Quay, PD. 1981. Atmospheric 14C changes resulting from fossil fuel CO2 release and cosmic ray flux variability. Earth and Planetary Science Letters 53(3):349–62.CrossRefGoogle Scholar
Stuiver, M, Reimer, PJ. 1986. A computer program for radiocarbon age calculation. Radiocarbon 28(2B): 1022–30.CrossRefGoogle Scholar
Stuiver, M, Reimer, PJ. 1993. Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35(1):215–30.CrossRefGoogle Scholar
Stuiver, M, Reimer, PJ, Bard, E, Beck, JW, Burr, GS, Hughen, KA, Kromer, B, McCormac, G, van der Plicht, J, Spurk, M. 1998. INTCAL98 radiocarbon age calibration, 24,000–0 cal BP. Radiocarbon 40(3):1041–83.CrossRefGoogle Scholar
Vandeputte, K, Moens, L, Dams, R. 1996. Improved sealed-tube combustion of organic samples to CO2 for stable isotopic analysis, radiocarbon dating and percent carbon determinations. Analytical Letters 29:2761–74.CrossRefGoogle Scholar
van der Plicht, J, Wijma, S, Aerts, AT, Pertuisot, MH, Meijer, HAJ. 2000. Status report: the Groningen AMS facility. Nuclear Instruments and Methods in Physics Research B 172(1–4):5865.CrossRefGoogle Scholar
Ward, GK, Wilson, SR. 1978. Procedures for comparing and combining radiocarbon age determinations: a critique. Archaeometry 20(1):1931.CrossRefGoogle Scholar
Xu, S, Anderson, R, Bryant, C, Cook, GT, Dougans, A, Freeman, S, Naysmith, P, Schnabel, C, Scott, EM. 2004. Capabilities of the new SUERC 5MV AMS facility for 14C dating. Radiocarbon 46(1):5964.CrossRefGoogle Scholar