Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-23T15:28:50.891Z Has data issue: false hasContentIssue false

WIGGLE-MATCH DATING OF A FLOATING OAK CHRONOLOGY FROM AN EARLY IRON AGE GRAVE CONSTRUCTION (ERESZTVÉNYI FOREST, FEHÉRVÁRCSURGÓ, HUNGARY)

Published online by Cambridge University Press:  25 August 2021

Z Kern*
Affiliation:
Institute for Geological and Geochemical Research, Research Centre for Astronomy and Earth Sciences, Eötvös Loránd Research Network, H-1112, Budaörsi út 45, Budapest, Hungary
B Jungbert
Affiliation:
Szent István Király Múzeum, H-8000, Székesfehérvár, Fő utca 6, Hungary
A Morgós
Affiliation:
Consart, H-1124, Budapest, Kálló esperes u. 1, Hungary
M Molnár
Affiliation:
Isotope Climatology and Environmental Research Centre (ICER), Institute for Nuclear Research, Eötvös Loránd Research Network, Bem tér 18/c, Debrecen, Hungary
E Horváth
Affiliation:
Independent Researcher, H-8051, Sárkeresztes, Kölcsey Ferenc u. 53, Hungary
*
*Corresponding author. Email: [email protected]

Abstract

Archaeological excavations unearthed three burial mounds between 1983 and 1986 at Fehérvárcsurgó (Hungary). Based on the archaeological determination the site was dated to the Early Iron Age. A complex wooden architecture was observed in the largest tumulus containing inner and outer beam constructions separated by stone blocks. Dendrochronological and radiocarbon (14C) analyses were performed on conserved logs (n=5) to constrain the felling date of the timber, identified as oak, and the construction period of the tumuli. The four longest ringwidth series were synchronized providing a 153-yr-long floating chronology. Five blocks were removed from the cross sections and accelerator mass spectrometry (AMS) 14C analysis was performed on the separated α-cellulose. A wiggle-matching procedure was employed as the 14C ages were in agreement with their relative position in the tree-ring sequence and concurred with the expected archaeological period. The calibrated age range of the last extant ring is 747–707 cal BC (95.4%). The earliest possible felling date of the trees used in the construction was between 735 and 695 BC considering the missing sapwood. This is the first 14C dated tree-ring width chronology from the Early Iron Age in Hungary providing a valuable reference for dendroarchaeological studies along the eastern border of the Hallstatt Culture.

Type
Research Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press for the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baillie, MGL, Pilcher, JR. 1973. A simple cross-dating programme for tree-ring research. Tree-Ring Bulletin 33:714.Google Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337360.CrossRefGoogle Scholar
Buras, A, Wilmking, M. 2015. Correcting the calculation of Gleichläufigkeit. Dendrochronologia 34:2930.CrossRefGoogle Scholar
Czajlik, Z, Novimszki-Groma, K, Horváth, A. 2015. Données relatives á la topographie de la microrégion de Süttő (Transdanubie, Hongrie) au Premier Age du Fer. In: Borhy L, Tanko K, Dévai K, editors. Studia Arch Nicolae Szabó LXXV annos nato dedicate (Budapest). p. 59–76.Google Scholar
Czajlik, Z, Holl, B, Nemeth, T, Gabriella Puszta, S, Vicze, M. 2016. New results in the topographic research on the Early Iron Age Tumulus Cemetery in Érd-Százhalombatta. Arch. Korrespondenzblatt 46(1):5773.Google Scholar
Chochorowski, J, Krąpiec, M, Skoryj, S, Skrypkin, V. 2014. Wiggle-match dating of tree-ring sequences from the Early Iron Age defensive settlement Motroninskoe Gorodishche in Mielniki (central Ukraine). Radiocarbon 56(2):645654.CrossRefGoogle Scholar
Collins 2013. Hallstatt Culture. In: Bagnall RS, Brodersen K, Champion CB, Erskine A, Huebner SR, editors. The encyclopedia of ancient history. 1st edition. p. 3047–3050.Google Scholar
Conner, AH. 1996. Urea-formaldehyde adhesive resins. In: Salamone J, editor. Polymeric materials encyclopedia. CRC Press. p. 8496–8501.Google Scholar
Ďurkovič, É. 2014. A Kárpát-medence északnyugati részének településszerkezete a korai vaskor középső és kései szakaszában [PhD dissertation]. Budapest.Google Scholar
Ďurkovič, É. 2017. The settlement structure of the north-western part of the Carpathian Basin during the middle and late Early Iron Age. The Early Iron Age settlement at Győr-Ménfőcsanak (Hungary, Győr–Moson–Sopron county). Dissertationes Archaeologicae 3(4):417–426. doi: 10.17204/dissarch.2015.417.CrossRefGoogle Scholar
Ďurkovič, É, Jerem, E, Molnár, A, Tankó, K. 2018. A Kárpát-medence a vaskorban: interdiszciplináris kutatások legújabb eredményei—Das Karpatenbecken in der Eisenzeit: aktuelle Ergebnisse interdisziplinärer Forschungen. In: 7000 év története: Fejezetek Magyarország régészetérből. Remshalden: Verlag Bernhard Albert Greiner. p. 91–116. ISBN 9783867050852.Google Scholar
Dušek, M, Dušek, S. 1984. Smolenice-Molpír. Befestigter Fürstensitz der Hallstattzeit. I. Nitra.Google Scholar
Eckstein, D, Bauch, J. 1969. Beitrag zur Rationalisierung eines dendrochronologischen Verfahrens und zur Analyse seiner Aussagesicherheit. Forstwissenschaftliches Centralblatt 88(4):230250.CrossRefGoogle Scholar
Fahrni, SM, Southon, J, Fuller, BT, Park, J, Friedrich, M, Muscheler, R, Wacker, L, Taylor, RE. 2020. Single-year German oak and Californian bristlecone pine 14C data at the beginning of the Hallstatt plateau from 856 BC to 626 BC. Radiocarbon 62:919937.CrossRefGoogle Scholar
Fekete, M. 1985. Rettungsgrabung früheisenzeitlicher Hügelgraber in Vaskeresztes. Acta Archaeologica Academiae Scientiarum Hungaricae 37:3378.Google Scholar
Friedrich, M, Hennig, H. 1996. Dendrodate for the Wehringen Iron Age wagon grave (778±5 BC) in relation to other recently obtained absolute dates for the Hallstatt Period in southern Germany. Journal of European Archaeology 4:281303. doi: 10.1179/096576696800688178.CrossRefGoogle Scholar
Galimberti, M, Bronk Ramsey, C, Manning, SW. 2004. Wiggle-match dating of tree-ring sequences. Radiocarbon 46(2):917924.CrossRefGoogle Scholar
Grynaeus, A. 1997. Dendrokronológiai kutatások Magyarországon – Kandidátusi értekezés. Budapest.Google Scholar
Grynaeus, A. 2002. Dendrokronológiai kutatások és eredményei Magyarországon. Földtani Közlöny 132:265272.Google Scholar
Gyulai, F. 2012. Kora vaskori fejedelmi sirok archaeobotanikai maradvanyai Fehérvárcsurgóról. In: Kreiter A, Pető Á, Tugya B, editors. Környezet–Ember–Kultúra. A természettudományok és a régészet párbeszéde. Magyar Nemzeti Múzeum Nemzeti Örökségvédelmi Központ 2010. október 6–8-án megrendezett konferenciájának tanulmánykötete. Magyar Nemzeti Múzeum Nemzeti Örökségvédelmi Központ, Budapest. p. 163–172.Google Scholar
Hajdas, I. 2009. Applications of radiocarbon dating method. Radiocarbon 51(1):7990. doi: 10.1017/S0033822200033713.CrossRefGoogle Scholar
Holport, Á. 1996. Építészeti emlékek az Érd-százhalombattai kora vaskori halomsíros temetőből. In: Poroszlai I, editor. Ásatások Százhalombattán 1955–1989. Százhalombatta. p. 34–42.Google Scholar
Holport, Á. 1999. Theoretical and practical problems of reconstruction in the case of an Iron Age tumulus. In: Jerem E, Poroszlai I, editors. Archaeology of the Bronze and Iron Age, Proceedings of the International Archaeological Conference, Százhalombatta, Hungary, 3–7 October 1996. Budapest: Archaeolingua. p. 303–308.Google Scholar
Horváth, L. 2014. Early Iron Age graves from Keszthely and its environs. In: Heinrich-Tamáska O, Straub P editors. p. 63–97.Google Scholar
Jacobsson, P, Hamilton, WD, Cook, G, Crone, A, Dunbar, E, Kinch, H, Naysmith, P, Tripney, B, Xu, S. 2018. Refining the Hallstatt plateau: short-term 14C variability and small scale offsets in 50 consecutive tree-rings from southwest Scotland dendro-dated to 410–460 BC. Radiocarbon 60(1):219237.CrossRefGoogle Scholar
Jansen, D, Mischka, D, Nelle, O. 2013. Wood usage and its influence on the environment from the Neolithic until the Iron Age: a case study of the graves at Flintbek (Schleswig–Holstein, northern Germany). Veget Hist Archaeobot 22:335349. doi: 10.1007/s00334-012-0386-7.CrossRefGoogle Scholar
Jerem, E. 1980. Sopron im Spannungsfeld eisenzeitlicher Kulturbeziehungen. Forschungsbericht Ur- und Frühgeschichte, Wien. p. 11.Google Scholar
Jerem, E. 1986. Bemerkungen zur Siedlungsgeschichte der Spathallstatt- und Frühlatenzeit im Ostalpenraum, Veranderungen in der Siedlungstruktur archaeologische und palaoökologische Aspekte. p. 107–118.Google Scholar
Jerem, E. 2003. The early Iron Age in Transdanubia: the Hallstatt culture. In: Visy Z, editor. Hungarian archaeology at the turn of the millennium. p. 183–191.Google Scholar
Jerem, E, Mester, Zs, editors. 2008. Őskori emlékek és Gyűjtemények Magyarországon, Itinerarium Hungaricum II. Archaeolingua. p. 61–62.Google Scholar
Jull, AJT, Panyushkina, I, Miyake, F, Masuda, K, Nakamura, T, Mitsutani, T, Lange, TE, Cruz, RJ, Baisan, C, Janovics, R, Varga, T, Molnár, M. 2018. More rapid 14C excursions in the tree-ring record: a record of different kind of solar activity at about 800 BC? Radiocarbon 60(4):12371248.CrossRefGoogle Scholar
Jungbert, B. 1991. Early Iron age (HC2) settlement centre at Fehérvárcsurgó, Actes du XII. Congres International des Sciences Préhistoriques et Protohistoriques, Bratislava, 1–7 Septembre 1991. p. 191–197.Google Scholar
Kolář, T, Kyncl, T, Rybníček, M. 2012. Oak chronology development in the Czech Republic and its teleconnection on a European scale. Dendrochronologia 30:243248.CrossRefGoogle Scholar
Kovács, T, Jungbert, B, F. Petres É. 1984. Fehérvárcsurgó – Eresztvényi erdő, Régészeti Füzetek, Ser. 1. 38:11.Google Scholar
Lengyel, I. 1959. A halimbai (Veszprém megye) kora vaskori temető (Le cimetiere du Premier age du Fer de Halimba). Arch Ért. 86:159169.Google Scholar
Makarová, E. 2013. Chamber tombs of the Platěnice culture–elite burials? In: Karl R, Leskovar J, editors. Interpretierte Eisenzeiten. Fallstudien, Methoden, Theorie. Tagungsbeiträge der 5. Linzer Gespräche zur interpretativen Eisenzeitarchäologie. Studien zur Kulturgeschichte von Oberösterreich, Folge 37. Linz. p. 95–106.Google Scholar
Manning, S, Birch, J, Conger, M, Sanft, S. 2020. Resolving time among non-stratified short-duration contexts on a radiocarbon plateau: possibilities and challenges from the AD 1480–1630 example and Northeastern North America. Radiocarbon 62(6):17851807. doi: 10.1017/RDC.2020.51.CrossRefGoogle Scholar
Maráz, B. 1979. Pécs-Jakabhegy, Előzetes jelentés az 1976-77. évi ásatásokról. Arch. Ért. 106:7893.Google Scholar
Metzner-Nebelsick, C. 2017. At the crossroads of the Hallstatt East. In: van der Vaart-Verschoof S, Schumann R, editors. Connecting elites and regions. Leiden: Sidestone Press. p. 349–379.Google Scholar
Molnár, M, Rinyu, L, Janovics, R, Major, I, Veres, M. 2012. Az új debreceni C-14 laboratórium bemutatása (Introduction of the new AMS C-14 laboratory in Debrecen). Archeometriai Műhely 9:147160.Google Scholar
Molnár, M, Janovics, R, Major, I, Orsovszki, J, Jull, AJT. 2013a. Status report of the new AMS C-14 sample preparation lab of the Hertelendi Laboratory of Environmental Studies, Debrecen, Hungary. Radiocarbon 55:665676.CrossRefGoogle Scholar
Molnár, M, Rinyu, L, Veres, M, Seiler, M, Wacker, L, Synal, H-A. 2013b. EnvironMICADAS: a mini 14C-AMS with enhanced gas ion source interface in the Hertelendi Laboratory of Environmental Studies (HEKAL), Hungary. Radiocarbon 55:338344.CrossRefGoogle Scholar
Morgós, A, Holport, Á, Lukács, K, Gelesz, A, Poroszlai, I. 2006. On-site conservation/reconstruction of an Iron Age tumulus with timber grave chamber, Százhalombatta, Hungary. Conservation and Management of Archaeological Sites 7:139162.CrossRefGoogle Scholar
Nebelsick, LD. 1994, Der Übergang von der Urnenfelder- zur Hallstattzeit am nördlichen Ostalpenrand und im nördlichen Transdanubien. In: Schauer P, editor. Archaeologische Untersuchungen zum Übergang von der Bronze- zur Eisenzeit zwischen Nordsee und Kaukasus. Regensburger Beitrage zur Prahistirschen Arch. 1 (Bonn 1994):307–363.Google Scholar
Nováki, Gy. 1955: A soproni Várhely ásatásának története, Soproni Szemle 9(1–2):131–136.Google Scholar
O’Hare, P, Mekhaldi, F, Adolphi, F, Raisbeck, G, Aldahan, A, Anderberg, E, Beer, J, Christl, M, Fahrni, S, Synal, H-A, Park, J, Possnert, G, Southon, J, Bard, E, ASTER team, Muscheler, R. 2019. Multiradionuclide evidence for an extreme solar proton event around 2610 BP (∼660 BC). PNAS 116(13):59615966.CrossRefGoogle Scholar
Patek, E. 1982. Neue Untersuchungen auf dem Burgstall bei Sopron. Berichte der Römisch-germanischer Kommission 63:5984.Google Scholar
Patek, E. 1993. Westungarn in der Hallstattzeit. Acta humaniora, Weinheim Google Scholar
Pearson, C, Ważny, T, Kuniholm, P, Botić, K, Durman, A, Seufer, K. 2014. Potential for a new multimillennial tree-ring chronology from subfossil Balkan river oaks. Radiocarbon 56(4):S51S59. doi: 10.2458/azu_rc.56.18342.CrossRefGoogle Scholar
Pichler, T, Nicolussi, K, Thurner, A. 2011. Jahrringanalysen an prähistorischen Holzkohlen der Grube Mauk E. Die Bedeutung dendrochronologischer Untersuchungen für archäologische Fragestellungen. In: Goldenberg G, Töchterle U, Oeggl K, Krenn-Leeb A, editors. HiMAT – Neues zur Bergbaugeschichte in Westösterreich, Archäologie Österreichs Spezial 4. p. 79–86.Google Scholar
Pokorný, P 2004. Vegetation. In: Chytráček M, Metlička M, editors. Die Höhensiedlungen der Hallstatt- und Latènezeit in Westböhmen. Památky archeologické—Supplementum 16. Prague. p. 7–9.Google Scholar
Prokop, O, Kolář, T, Kyncl, T, Rybníček, M. 2017. Updating the Czech millennia-long oak tree-ring width chronology. Tree-Ring Research 73(1):4752.CrossRefGoogle Scholar
Reimer, P, Austin, W, Bard, E, Bayliss, A, Bronk Ramsey, C. 2020: The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62(4):725757.CrossRefGoogle Scholar
Rinn, F. 2005. TSAP reference manual. Heidelberg.Google Scholar
Rinyu, L, Molnár, M, Major, I, Nagy, T, Veres, M, Kimák, Á, Wacker, L, Synal, H-A. 2013. Optimization of sealed tube graphitization method for environmental 14C studies using MICADAS. Nuclear Instruments and Methods in Physics Research B 294:270275.CrossRefGoogle Scholar
Schoch, W, Heller, I, Schweingruber, FH, Kienast, F. 2004. Wood anatomy of central European species. URL: www.woodanatomy.ch.Google Scholar
Stokes, MA, Smiley, TL 1968. An introduction to tree-ring dating. Chicago: Chicago University Press.Google Scholar
Vadász, É. 1983. Előzetes jelentés egy kora vaskori halomsír feltárásáról Süttőn. Vorbericht über die Erschließung eines früheisenzeitlichen Hügels in Süttő. Communicationes Archaeologicae Hungariae 3: 19–54.Google Scholar
van der Vaart-Verschoof, S, Schumann, R. 2017. Differentiation and globalization in Early Iron Age Europe. In: van der Vaart-Verschoof S, Schumann R, editors. Connecting elites and regions. Leiden: Sidestone Press. p. 927.Google Scholar