Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-05T19:23:11.194Z Has data issue: false hasContentIssue false

Use of the Radiocarbon Activity Deficit in Vegetation as a Sensor of CO2 Soil Degassing: Example from La Solfatara (Naples, Southern Italy)

Published online by Cambridge University Press:  12 December 2017

Jean-Claude Lefevre*
Affiliation:
Univ Lyon, CNRS, ARAR UMR 5138 – Centre de Datation par le Radiocarbone, Villeurbanne, France
Pierre-Yves Gillot
Affiliation:
Université Paris Saclay – GEOPS, Université Paris Sud – CNRS, Orsay, France
Carlo Cardellini
Affiliation:
Università di Perugia – Dipartimento di Fisica e Geologica, Perugia, Italy
Marceau Gresse
Affiliation:
Université Paris Saclay – GEOPS, Université Paris Sud – CNRS, Orsay, France
Louis Lesage
Affiliation:
Université Paris Saclay – GEOPS, Université Paris Sud – CNRS, Orsay, France
Giovani Chiodini
Affiliation:
Istituto Nazionale di Geofisica e Vulcanologia Sezione di Bologna Ringgold Standard Institution – INGV, Bologna, Emilia-Romagna, Italy
Christine Oberlin
Affiliation:
Univ Lyon, CNRS, ARAR UMR 5138 – Centre de Datation par le Radiocarbone, Villeurbanne, France
*
*Corresponding author. Email: [email protected].

Abstract

Soil CO2 flux measurement is a key method that can be used to monitor the hazards in an active volcanic area. In order to determine accurately the variations of the CO2 soil emission we propose an approach based on the radiocarbon (14C) deficiency recorded in the plants grown in and around the Solfatara (Naples, Italy). We twice sampled selected poaceae plants in 17 defined sites around the Solfatara volcano. 14C measurements by liquid scintillation counting (LSC) were achieved on the grass samples. The 14C deficiency determined in the sampled plants, compared to the atmosphere 14C activity, ranged from 6.6 to 51.6%. We then compared the proportion of magmatic CO2 inferred to the instantaneous measurements of CO2 fluxes from soil performed by the accumulation chamber CO2 degassing measurement at the moment of the sampling at each site. The results show a clear correlation (r=0.88) between soil CO2 fluxes and 14C activity. The determination of the plants 14C deficiency provides an estimate of the CO2 rate within a few square meters, integrating CO2 soil degassing variations and meteorological incidences over a few months. It can therefore become an efficient bio-sensor and can be used as a proxy to cartography of the soil CO2 and to determine its variations through time

Type
Research Article
Copyright
© 2017 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allard, P, Carbonnell, J, Dajlevic, D, Le Bronec, J, Morel, P, Robe, MC, Maurenas, JM, Faivre-Pierret, R, Martin, D, Sabroux, J-C, Zetvog, P. 1991a. Eruptive and diffuse emissions of CO2 from Mount Etna. Nature 351:387391.Google Scholar
Allard, P, Maiorani, A, Tedesco, D, Cortecci, G, Turi, B. 1991b. Isotopic constraints on the origin of sulfur and carbon in Solfatara fumaroles, Campi Flegrei caldera. Journal of Volcanology and Geothermal Research 48:139159.Google Scholar
Allard, P, Pasquier-Cardin, A, Fontugne, M, Hatté, C, Baubron, J-C. 1997. 14C-aging of Plants by Diffuse Soil Degassing in Volcanic Areas and its Bearing Upon Radiocarbon Dating of Volcanic Eruptions. Puerto Vallarta, Mexico: IAVCEI Assembly. 108 p.Google Scholar
Allard, P, Aiuppa, A, Beauducel, F, Gaudin, F, Di Napoli, R, Calabrese, S, Parello, F, Crispi, O, Hammouya, G, Tamburello, G. 2014. Steam and gas emission rate from La Soufriere volcano, Guadeloupe (Lesser Antilles): implications for the magmatic supply during degassing unrest. Chemical Geology 384:7693.CrossRefGoogle Scholar
D’Auria, L, Susi, P, Castaldo, R, Giudicepietro, F, Macedonio, G, Ricciolino, P, Tizzani, P, Casu, F, Lanardi, R, Manzo, M, Martini, M, Sansosti, E, Zinno, I. 2015. Magma injection beneath the urban area of Naples: a new mechanism for 2012–2013 volcanic unrest at Campi Flegrei caldera. Scientific Reports 5. DOI: 10.1038/srep13100.CrossRefGoogle Scholar
Badalamenti, B, Gurrieri, S, Hauser, S, Parello, F, Valenza, M. 1991. Change in the soil CO2 output at Vulcano during the summer 1988. Acta Vulcanologica 1:219221.Google Scholar
Barberi, F, Corrado, G, Inocenti, F, Luongo, G. 1984. Phlaegrean Fields 1982–1984: brief chronical of a volcano emergency in a densely populated area. Bulletin of Volcanology 47:175185.Google Scholar
Baubron, JC, Allard, P, Sabroux, J-C, Tedesco, D, Toutain, JP. 1991. Soil gas emanations as precursory indicators of volcanic eruptions. Journal of the Geological Society London 148:571–576.Google Scholar
Bergfeld, D, Goff, F, Janik, CJ. 2001. Elevated carbon dioxide flux at the Dixie Valley geothermal field, Nevada; relations between surface phenomena and the geothermal reservoir. Chemical Geology 177:4366.Google Scholar
Blockley, SPE, Ramsey, CB, Pyle, DM. 2008. Improved age modelling and high precision age estimate of late quaternary tephras, for accurate paleoclimate reconstruction. Journal of Volcanology and Geothermal Research 177:251262.Google Scholar
Bonafede, M, Dragoni, M, Quareni, F. 1986. Displacement and stress fields produced by a centre of dilatation and by a pressure source in a visco-elastic half space: application to the study of ground deformation and seismic activity at Campi Flegrei, Italy. Geophysical Journal of the Royal Astronomical Society 87:455485.Google Scholar
Bonafede, M, Ferrari, C. 2009. Analytical models of deformation and residual gravity changes due to a Mogi source in a visco-elastic medium. Tectonophysics 471:413.CrossRefGoogle Scholar
Bruns, M, Levin, I, Münnich, KO, Hubberten, HW, Fillipakis, S. 1980. Regional sources of volcanic carbon dioxide and their influence on 14C content of present-day plant material. Radiocarbon 22(2):532536.Google Scholar
Caliro, S, Chiodini, G, Moretti, R, Avino, R, Granieri, D, Russo, M, Fiebig, J. 2007. The origin of the fumaroles of La Solfatara (Campi Flegrei, South Italy). Geochimica et Cosmochimica Acta 71:30403055.CrossRefGoogle Scholar
Camarda, M, Gurrieri, S, Valenza, M. 2006. CO2 flux measurements in volcanic areas using the dynamic concentration method: the influence of the soil permeability. Journal of Geophysical Research 111(B5). DOI: 10.1029/2005JB003898.Google Scholar
Carrapezza, ML, Ricci, T, Ranaldi, M, Tarquini, L. 2009. Active degassing structures of Stromboli and variations in diffuse CO2 output related to the volcanic activity. Journal of Volcanology and Geothermal Research 182:231245.Google Scholar
Carrapezza, ML, Barberi, F, Ranaldi, M, Ricci, T, Taquini, L, Barancos, J, Fisher, C, Perez, N, Weber, K, Di Piazza, A, Gattuso, A. 2011. Diffuse CO2 soil degassing and CO2 and H2S concentrations in air and related hasards at Vulcano Island (Aeolian arc, Italy). Journal of Volcanology Geothermal Research 207:130144.Google Scholar
Cassignol, C, Gillot, P-Y. 1982. Range and effectiveness of unspiked potassium-argon dating: experimental groundwork and applications. In: Odin GS, editor. Numerical Dating in Stratigraphy. Willey and Sons. p 159179.Google Scholar
Chiodini, G, Cioni, R, Guidi, M, Raco, B, Marini, L. 1998. Soil diffusion flux measurements in volcanic and geothermal areas. Applied Geochemistry 13:543552.Google Scholar
Chiodini, G, Frondini, F, Cardellini, C, Granieri, D, Marini, L, Ventura, G. 2001. CO2 degassing and energy release at Solfatara Volcano, Campi Flegrei, Italy. Journal of Geophysical Research 106(B8):16, 213–16, 223.CrossRefGoogle Scholar
Chiodini, G, Todesco, M, Caliro, S, Del Gaudio, C, Macedonio, G, Russo, M. 2003. Magma degassing as a trigger of bradyseismic events: the case of Phlegrean Fields (Italy). Geophysical Research Letters 30(8):1434.Google Scholar
Chiodini, G, Avino, R, Caliro, S, Minopoli, C. 2011. Temperature and pressure gas geo-indicators at the Solfatara Fumaroles (Campi Flegrei). Annales Geophysicae 54(2):151160.Google Scholar
Chiodini, G, Caliro, S, De Martino, P, Avino, R, Gherardi, F. 2012. Early signals of new volcanic unrest at Campi Flegrei caldera? Insights from geochemical data and physical simulations. Geology 40:943946.Google Scholar
Chiodini, G, Pappalardo, L, Aiuppa, A, Caliro, S. 2015a. The geological CO2 degassing history of a long-lived caldera. Geology 43:767770.Google Scholar
Chiodini, G, Vandemeulebrouck, J, Caliro, S, D’Auria, L, De Martino, P, Mangiacapra, A, Petrillo, Z. 2015b. Evidence of thermal driven processes triggering the 2005–2014 unrest at Campi Flegrei caldera. Earth and Planetary Science Letters 414:5867.Google Scholar
Cook, AC, Hainsworth, LJ, Sorey, ML, Evans, WC, Southon, JR. 2001. Radiocarbon studies of plant leaves and tree rings from Mammoth Mountain, CA: a long-term record of magmatic CO2 release. Chemical Geology 177(1–2):117131.Google Scholar
D’Antonio, M, Civetta, L, Orsi, G, Pappalardo, L, Piochi, M, Carandente, A, De Vita, S, Di Vito, MA, Isaia, R. 1999. The present state of the magmatic system of the Campi Flegrei caldera based on a reconstruction of its behaviour in the past 12 ka. Journal of Volcanology and Geothermal Research 91:247268.Google Scholar
Delmelle, P, Stix, J. 1999. Volcanic gases. Encyclopedia of Volcanoes. 1st edition. Academic Press. p 803–15.Google Scholar
De Natale, G, Pingue, F, Allard, P, Zollo, A. 1991. Geophysical and geochemical modelling of the 1982-1984 unrest phenomena at Campi Flegrei caldera (Southern Italy). Journal of Volcanology and Geothermal Research 48:199222.CrossRefGoogle Scholar
De Vivo, B, Rolandi, G, Gans, PB, Calvert, A, Bohrson, WA, Spera, FJ, Belkin, HE. 2001. New constraints on the pyroclastic volcanic history of the Campanian volcanic Plain (Italy). Mineralogy and Petrology 73:4765.CrossRefGoogle Scholar
Dvorak, JJ, Gasparini, P. 1991. History of earthquakes and vertical ground movements in Campi Flegrei caldera (Southern Italy): a comparison of precursor events to the AD eruption of Monte Nuovo and of activity since 1968. Journal of Volcanology and Geothermal Research 48:7792.CrossRefGoogle Scholar
Evans, WC, Bergfeld, D, McGeehan, JP, King, J, Heasler, H. 2010. Treering 14C links seismic warm to CO2 spike at Yellostone, USA. Geology 38:10751078.Google Scholar
Farquhar, GD, Ehleringer, R, Hubic, KT. 1989. Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 40:503537.Google Scholar
Farrar, CD, Sorey, ML, Evans, WC, Howle, JF, Kerr, BD, Kennedy, BM, King, CY, Southon, JR. 1995. Forest killing diffuse CO2 emission at Mammoth Mountain as a sign of magmatic unrest. Nature 376:675678.Google Scholar
Gillot, PY, Cornette, Y. 1986. The “Cassignol technique” for potassium-argon dating, precision and accuracy: examples from the Late Pleistocene to recent volcanics from Southern Italy. Chemical Geology (Isotope Geoscience section) 59:205222.Google Scholar
Granieri, D, Avino, R, Chiodini, G. 2010. Carbon dioxide diffuse emission from the soil: ten years of observations at Vesuvio and Campi Flegrei (Pozzuoli) and linkages with volcanic activity. Bulletin of Volcanology 72:103118.Google Scholar
Gottsmann, J, Rymer, H, Berrino, G. 2006. Unrest at the Campi Flegrei caldera (Italy): a critical evaluation of source parameters from geodetic data inversion. Journal of Volcanology and Geothermal Research 150:132145.CrossRefGoogle Scholar
Gurrieri, S, Valenza, M. 1988. Gas transport in natural porous mediums: a method for measuring CO2 flows from the ground in volcanic and geothermal areas. Rendiconti della Società italiana di mineralogia e petrologia 43:11511158.Google Scholar
Hernandez, PA, Perez, N, Salazar, JM, Nakai, S, Notsu, K, Wakita, H. 1998. Diffuse emissions of carbon dioxide, methane, and helium-3 from Teïde volcano, Tenerife, Canary Islands. Geophysical Research Letters 25:3311–3314.Google Scholar
Lewicki, JL, Hilley, GE. 2009. Eddy covariance mapping and quantification of surface CO2 leakage fluxes. Geophysical Research Letters 36(21):L21802.Google Scholar
Lewicki, JL, Hilley, GE, Dobeck, L, Marino, BDV. 2012. Eddy covariance imaging of diffuse volcanic CO2 emissions at Mammoth Mountain, CA, USA. Bulletin of Volcanology 74(1):135141.Google Scholar
Lewicki, JL, Hilley, GE, Shelly, DR, King, JC, Mc Geehin, JP, Mangan, M, Evans, WC. 2014. Crustal migration of CO2-rich magmatic fluids recorded by tree-ring radiocarbon and seismicity at Mammoth Mountain, CA, USA. Earth and Planetary Science Letters 390:5258.Google Scholar
Mann, WB. 1983. An international reference material for radiocarbon dating. Radiocarbon 25(2):519522.Google Scholar
McGee, KA, Gerlach, TM. 1998. Annual cycle of magmatic CO2 in a tree-kill soil at Mammoth Mountain, California: implications for soil acidification. Geology 26:463466.Google Scholar
McGee, KA, Gerlach, TM, Kessler, R, Doukas, MP. 2000. Geochemical evidence for a magmatic CO2 degassing event at Mammoth Mountain, California, September–October 1997. Journal of Geophysical Research 105:84478456.Google Scholar
Mook, WG, van der Plicht, J. 1999. Reporting 14C activities and concentrations. Radiocarbon 41(3):227239.Google Scholar
Mostacci, D, Chiodini, G, Berti, C, Tinazzi, O. 2009. Carbon-14 as a marker of seismic activity. Radiation Effects and Defects in Solids 164(5):376381.CrossRefGoogle Scholar
Norman, JM, Garcia, R, Verma, SB. 1992. Soil surface CO2 fluxes and the carbon budget of a grass land. Journal of Geophysical Research 97:1884518853.Google Scholar
Parkinson, KJ. 1981. An improved method for measuring soil respiration in the field. Journal of Applied Ecology 18:221228.Google Scholar
Passariello, I, Albore Livadie, C, Pierfrancesco, T, Lubritto, C, D’Onofrio, A, Terrasi, F. 2009. 14C Chronology of Avellino pumices eruption and timing of human reoccupation of the devastated region. Radiocarbon 51(2):114.Google Scholar
Pasquier-Cardin, A, Allard, P, Ferreira, T, Hatté, C, Coutinho, R, Fontugne, M, Jaudon, M. 1999. Magma derived CO2 emissions recorded in 14C and 13C content of plants growing in Furnas caldera, Azores. Journal of Volcanology and Geothermal Research 92(1–2):195207.Google Scholar
Pedone, M, Aiuppa, A, Giudice, G, Grassa, F, Cardellini, C, Chiodini, G, Valenza, M. 2015. Volcanic CO2 flux measurement at Campi Flegrei by tuneable diode laser absorption spectrometrie. Bulletin of Volcanology 76:812.Google Scholar
Rolandi, G, Petrosino, P, Geehin, JM. 1998. The interplinian activity at Somma-Vesuvius in the last 3500 years. Journal of Volcanology and Geothermal Research 82:1952.Google Scholar
Saupé, F, Strappa, O, Coppens, R, Guillet, B, Jaegy, R. 1980. A possible source of error in 14C dates: volcanic emanations (examples from the Monte Amiata district, provinces of Grosseto and Siena, Italy). Radiocarbon 22(2):525531.Google Scholar
Stuiver, M, Polach, H. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355363.Google Scholar
Toutain, J-P, Bachelery, P, Blum, P-A, Cheminee, JL, Delorme, H, Fontaine, L, Kowalski, P, Taochy, P. 1992. Real time monitoring of vertical ground deformations during eruptions at Piton de la Fournaise. Geophysical Research Letters 19(6):553–556.Google Scholar
Scandone, R, Belluci, F, Lirer, L, Rolandi, G. 1991. The structure of the Campanian Plain and the activity of the Neapolitan volcanoes, Italy. Journal of Volcanology and Geothermal Research 48:131.Google Scholar
Werner, C, Chiodini, G, Granieri, D, Caliro, S, Avino, R, Russo, M. 2003. Eddy covariance measurments of hydrothermal heat flux at Solfatara volcano, Naples, Italy. Earth and Planetary Science Letters 210:561577.Google Scholar
Werner, C, Cardellini, C. 2006. Comparaison of carbon dioxide emissions with fluid upflow, chemistry, and geologic structures at the Rotorua geothermal system, New Zealand. Geothermics 35:221238.Google Scholar