Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T05:35:43.107Z Has data issue: false hasContentIssue false

Twenty-Five Years of Radiocarbon Dating Soils: Paradigm of Erring and Learning

Published online by Cambridge University Press:  18 July 2016

H. W. Scharpenseel
Affiliation:
Institute of Soil Science, Hamburg University, Allendeplatz 2, D-2000 Hamburg 13, Germany
Peter Becker-Heidmann
Affiliation:
Institute of Soil Science, Hamburg University, Allendeplatz 2, D-2000 Hamburg 13, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Soil organic matter sequesters close to three times the carbon existing totally in the living biomass and nearly the same for the total carbon in the atmosphere. Models, such as Jenkinson's or Parton's Century model, help to define soil organic matter fractions of different functions, based on residence time/14C age. Rejuvenation of soil carbon was felt to be the principal impediment to absolute soil dating, in addition to the ambiguity of the initiation point of soil formation and soil age. Recent studies, for example, of Becker-Heidmann (1989), indicate that a soil 14C age of >1000 yr cannot have >0.1% rejuvenation in the total soil organic matter compartments/fractions to be possible and sustainable. Always problematic in earlier observations were age vs. depth increases, in 14C profile curves showing an inflection of reduced age in the deepest samples, i.e., from the rim of the organic matter containing epipedon. We attribute this phenomenon, in mollic horizons, to earthworm casts in the terminal part of the escape tube. Becker-Heidmann (1989) has shown, in thin layer soil profile dating, a highly significant correlation between the highest 14C ages and the highest clay content. Thus, optimization of soil dating is, to a lesser degree, related to the applied extracting solvent system than to soil texture fractions. Such observations allow us to mitigate error ranges inherent in dating dynamic soil systems.

Type
II. Applied Isotope Geochemistry
Copyright
Copyright © The American Journal of Science 

References

Becker-Heidmann, P. 1989 Die Tiefenfunktionen der natürlichen Kohlenstoff-Isotopen-gehalte von vollständig dünnschichtweise beprobten Parabraunerden und ihre Relation zur Dynamik der organischen Substanz in diesen Böden. Dissertation, Hamburger Bodenkundliche Arbeiten 13: 1228.Google Scholar
Becker-Heidmann, P. 1990 Carbon fluxes in important soil classes, with emphasis on lessive soils and on soils of the terrestrial, of the hydromorphic and temporarily submerged environment. Final report to GTZ and DFG, Germany (Contract GTZ 72.7866.6-01.400/1420; DFG Scha 47/23): 1177.Google Scholar
Becker-Heidmann, P., Liu, L. and Scharpenseel, H. W. 1988 Radiocarbon dating of organic matter fractions of a Chinese Mollisol. Zeitschrift für Pflanzenernährung und Bodenkunde 151: 3739.CrossRefGoogle Scholar
Becker-Heidmann, P. and Scharpenseel, H. W. 1986 Thin layer δ13C and D14C monitoring of “lessive” soil profiles. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 12th International 14C Conference. Radiocarbon 28(2A): 383390.Google Scholar
Bertram, H. G. and Schleser, G. H. 1982 The 13C/12C isotope ratios in a north German Spodosol. In Schmidt, H. L., Förstel, H. and Heinzinger, K., eds., Stable Isotopes. Amsterdam, Elsevier: 115120.Google Scholar
Blackburn, G., Sleeman, J. R. and Scharpenseel, H. W. 1979 Radiocarbon measurements and soil micromorphology as guides to the formation of Gilgai at Kaniva, Victoria. Australian Journal of Soil Research 17: 115.CrossRefGoogle Scholar
Freytag, J. 1985 Das 13C/12C Isotopenverhältnis als aussagefähiger Bodenparameter, untersucht an tunesischen Kalkkrusten und sudanesischen Vertisolprofilen. Dissertation, Hamburger Bodenkundliche Arbeiten 3: 1265.Google Scholar
Geyh, M. A. 1970 Möglichkeiten und Grenzen der Radiokohlenstoff-Altersbestimmung von Bödenmethodische Probleme. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft 10: 239241.Google Scholar
Geyh, M. A., Benzler, H. H. and Röschmann, G. 1971 Problems of dating Pleistocene and Holocene soils by radiometric methods. In Yaalon, D., ed., Paleopedology, Origin, Dating and Nature of Paleosols. Jerusalem, Jerusalem University Press: 6375.Google Scholar
Grossmann, S. and Thomae, S. 1977 Zeitschrift für Naturforschung A 32: 1353.Google Scholar
Haken, H. 1988 Synergetik: Vom Chaos zur Ordnung und weiter ins Chaos. In Gerok, W., ed., Ordnung und Chaos. Stuttgart, Hinzel: 6575.Google Scholar
Jenkinson, D. S. 1981 The fate of plant and animal residues in soil. In Greenland, D. J. and Hayes, M. H. B., eds., The Chemistry of Soil Processes. New York, John Wiley & Sons: 503561.Google Scholar
Jenkinson, D. S and Rayner, J. H. 1977 The turnover of soil organic matter in some of the Rothamsted classical experiments. Soil Science 123: 298305.CrossRefGoogle Scholar
Lorenz, E. N. 1963 Journal of Atmospheric Science 20: 130, 448.2.0.CO;2>CrossRefGoogle Scholar
Martel, Y. A. and Paul, E. A. 1974 The use of radiocarbon dating of organic matter in the study of soil genesis. Soil Science Society of America Proceedings 38: 501506.Google Scholar
Martin, A., Mariotti, A., Balesdent, J., Lavelle, P. and Vuattoux, R. 1990 Estimate of organic matter turnover rate in a savannah soil by 13C natural abundance measurements. Soil Biology and Biochemistry 22(4): 517523.Google Scholar
Nakamura, K., Takai, Y. and Wada, E. 1990 Carbon isotopes of soil gases and related organic matter in an agroecosystem with special reference to paddy field. In Geochemistry of Gaseous Elements and Compounds. Athens, Theophrastus Publications. See also Symposium II, 6. Transactions of the 14th International Congress of Soil Science, Kyoto, Japan.Google Scholar
Neue, H. U., Becker-Heidmann, P. and Scharpenseel, H. W. 1990 Organic matter dynamics, soil properties, and cultural practices in rice lands and their relationship to methane production. In Bouwman, A. F., ed., Soils and the Greenhouse Effect. New York, John Wiley & Sons: 457466.Google Scholar
Parton, W. J., Sanford, R. L., Sanchez, P. A. and Stewart, J. W. B. 1989 Modeling soil organic matter dynamics in tropical soils. In Coleman, D. S., Oades, J. M. and Uehara, G., eds., Dynamics of Soil Organic Matter in Tropical Ecosystems. NifTAL Project, Honolulu, Hawaii, University of Hawaii Press: 153171.Google Scholar
Parton, W. J., Schimel, D.S., Cole, C. V. and Ojima, D. S. 1987 Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Science Society of America Proceedings 51: 11731179.Google Scholar
Scharpenseel, H. W. 1971 Radiocarbon dating of soils, problems, troubles, hopes. In Yaalon, D. H., Ed., Paleopedology – Origin, Nature and Dating of Paleosols. Jerusalem, Jerusalem University Press: 7788.Google Scholar
Scharpenseel, H. W. 1972 Messung der natürlichen C-14 Konzentration in der organischen Substanz von rezenten Böden. Eine Zwischenbilanz. Zeitschrift für Pflanzenerährung und Bodenkunde 133(3): 241263.Google Scholar
Scharpenseel, H. W. 1973 Natural radiocarbon measurement of soil and organic matter fractions and on soil profiles of different pedogenesis. In Rafter, T. A. and Grant-Taylor, T., eds., Proceedings of the 8th International Conference of Radiocarbon Dating. Wellington, Royal Society of New Zealand: 111.Google Scholar
Scharpenseel, H. W. 1975a Relativalter und Sukzession von Fraktionen der organischen Bodensubstanz. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft 22: 453466.Google Scholar
Scharpenseel, H. W. 1975b Relative age and age sequence of fractions of soil organic matter. Application of Nuclear Methods in Biology and Agriculture, ESNA Newsletter 5: 1017.Google Scholar
Scharpenseel, H. W. 1977 The search for biologically inert and lithogenic carbon in recent soil organic matter. Vienna, IAEA, Proceedings of IAEA Conference on Soil Organic Matter Studies SM 211 (71): 193200.Google Scholar
Scharpenseel, H. W., Becker-Heidmann, P., Neue, H. U. and Tsutsuki, K. 1989 Bomb-carbon, 14C dating and 13C measurements as tracers of organic matter dynamics as well a of morphogenetic and turbation processes. The Science of the Total Environment 81/82: 99110.Google Scholar
Scharpenseel, H. W, Freytag, J. and Becker-Heidmann, P. 1986a C-14 Altersbestimmungen und δ13C Messungen an Vertisolen, unter besonderer Berücksichtigung der Geziraböden des Sudan. Zeitschrift für Pflanzenernährung und Bodenkunde 149: 277289.Google Scholar
Scharpenseel, H. W. and Schiffman, H. 1977a Radiocarbon dating of soils, a review. Zeitschrift für Pflanzenernährung und Bodenkunde 149: 277289.CrossRefGoogle Scholar
Scharpenseel, H. W., Tsutsuki, K., Becker-Heidmann, P. and Freytag, J. 1986b Untersuchungen zur Kohlenstoffdynamik und Bioturbation von Mollisolen. Zeitschrift für Pflanzenernährung und Bodenkunde 149: 582597.Google Scholar
Schleser, G. H., Bertram, H. G., Scharpenseel, H. W. and Kerpen, W. 1983 Aussagen über Bildungsprozesse tunesischer Kalkkrusten mittels 13C/12C in einem Pseudogley unter Wald. Zeitschrift für Pflanzenernährung und Bodenkunde 144: 149155.Google Scholar
Stephan, S., Berrier, J., Depetre, A. A., Jeanson, C. Kooistra, M. J., Scharpenseel, H. W. and Schiffman, H. 1983 Characterization of in situ organic matter constituents in Vertisols from Argentina, using sub-microscopic and cytochemical methods – First report. Geoderma 30: 2134.Google Scholar
Yaalon, D. H. 1982 Aridic soils and geomorphic processes. Cremlingen, Germany, Catena-Verlag, Catena Supplement 1: 1219.Google Scholar