Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-08T01:32:00.814Z Has data issue: false hasContentIssue false

Twenty Years of Atmospheric 14Co2 Observations At Schauinsland Station, Germany

Published online by Cambridge University Press:  18 July 2016

Ingeborg Levin
Affiliation:
Institut für Umweltphysik, University of Heidelberg, Im Neuenheimer Feld 366 D-69120 Heidelberg, Germany
Bernd Kromer
Affiliation:
Institut für Umweltphysik, University of Heidelberg, Im Neuenheimer Feld 366 D-69120 Heidelberg, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present and discuss quasi-continuous long-term 14CO2 observations from the continental background station Schauinsland (48°N, 8°E, 1205 m asl, Black Forest, southern Germany). The observed steady decline of atmospheric 14CO2 from 1977 to 1996 can be described by a single exponential function with an e-folding time of (16.3 ± 0.2) yr. Summer means (May to August) in atmospheric 14CO2 at Schauinsland compare within Δ14C = ±4‰ with measurements made on individual rings from a tree grown in the near vicinity of the Schauinsland site. Both data sets are slightly depleted by up to 5‰ if compared to maritime background measurements of atmospheric 14CO2 made at Izaña, Tenerife. This is due to the influence of fossil fuel CO2 emissions over the European continent as well as generally in mid latitudes of the Northern Hemisphere. δ13C analyses from the Schauinsland samples show mean seasonal variations with an amplitude of ±0.4‰, caused by atmosphere-biosphere exchange, and a mean decrease from 1977 to 1996 of δ13C = −0.017‰ yr−1. This trend is mainly due to an increasing quantity of fossil fuel CO2 in the atmosphere, depleted in 13C/12C ratio, and compares well to trends measured at other stations in mid-to-high northern latitudes.

Type
Articles
Copyright
Copyright © The American Journal of Science 

References

Druffel, E. M. and Suess, H. E. 1983 On the radiocarbon record in banded corals: Exchange parameters and net transport of 14CO2 between atmosphere and surface ocean. Journal of Geophysical Research 88(C2): 12711280.Google Scholar
Goudriaan, J. 1992 Biosphere structure, carbon sequestering potential and the atmospheric 14C carbon record. Journal of Experimental Botany 43: 11111119.Google Scholar
Hesshaimer, V., Heimann, M. and Levin, I. 1994 Radiocarbon evidence for a smaller oceanic carbon dioxide sink than previously believed. Nature 370: 201203.CrossRefGoogle Scholar
Hesshaimer, V. and Levin, I. (ms.) Tracing the cycle of air mass through the stratosphere with bomb radiocarbon observations. Submitted to Geophysical Research Letters .Google Scholar
Hesshaimer, V. (ms.) 1997 Tracing the global carbon cycle with bomb radiocarbon. Ph.D. thesis, University of Heidelberg.Google Scholar
Hut, G. 1987 Consultants' Group Meeting on “Stable Isotope Reference Samples for Geochemical and Hydrological Investigations.” IAEA, Vienna, Austria, 16–18 September 1985. IAEA, Vienna.Google Scholar
Keeling, C. D., Worf, T. P., Wahlen, M. and van der Plicht, J. 1995 Interannual extremes in the growth of atmospheric CO2 . Nature 375: 666670.CrossRefGoogle Scholar
Kromer, B. and Münnich, K. O. 1992 CO2 gas proportional counting in radiocarbon dating – review and perspective. In Taylor, R. E., Long, A. and Kra, R. S., eds., Radiocarbon after Four Decades: An Interdisciplinary Perspective . New York, Springer-Verlag: 184197.Google Scholar
Kromer, B. and Becker, B. 1993 German oak and pine 14C calibration, 7200–9439 bc. In Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35(1): 125135.Google Scholar
Kuc, T. 1989 Changes of carbon isotopes in atmospheric CO2 of the Krakow region in the last five years. In Long, A., Kra, R. S. and Srdoč, D., eds, Proceedings of the 13th International 14C Conference. Radiocarbon 31(3): 441447.CrossRefGoogle Scholar
Levin, I., Bösinger, R., Bonani, G., Francey, R., Kromer, B., Münnich, K. O., Suter, M., Trivett, N. B. A. and Wölfli, W. 1992 Radiocarbon in atmospheric carbon dioxide and methane: Global distribution and trends. In Taylor, R. E., Long, A. and Kra, R. S., eds., Radiocarbon after Four Decades: An Interdisciplinary Perspective . New York, Springer-Verlag: 503517.Google Scholar
Levin, I., Graul, R. and Trivett, N. B. A. 1995 Long term observations of atmospheric CO2 and carbon isotopes at continental sites in Germany. Tellus 47B: 2334.Google Scholar
Levin, I., Münnich, K. O. and Weiss, W. 1980 The effect of anthropogenic CO2 and 14C sources on the distribution of 14C in the atmosphere. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 10th International 14C Conference. Radiocarbon 22(2): 379391.Google Scholar
Levin, I., Kromer, B., Schoch-Fischer, H., Bruns, M., Münnich, M., Berdau, B., Vogel, J. C. and Münnich, K. O. 1985 25 years of tropospheric 14C observations in Central Europe. Radiocarbon 27(1): 119.CrossRefGoogle Scholar
Levin, I., Kromer, B., Schoch-Fischer, H., Bruns, M., Münnich, M., Berdau, B., Vogel, J. C. and Münnich, K. O. 1994 Δ14CO2 records from sites in Central Europe. In Boden, T. A., Kaiser, D. P., Sepanski, R. J. and Stoss, F. W., eds., Trends '93: A Compendium of Data on Global Change . ORNL/CDIAC-65. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee: 203222.Google Scholar
Nydal, R. and Lövseth, K. 1996 Carbon-14 Measurements in Atmospheric CO 2 from Northern and Southern Hemisphere Sites, 1962–1993 . ORNL/CDIAC-93, NPD-057, Oak Ridge National Laboratory, Oak Ridge, Tennessee.Google Scholar
Rotty, R. M. 1983 Distribution of and change in industrial carbon dioxide production. Journal of Geophysical Research 88(C2): 13011308.Google Scholar
Schoch, H., Bruns, M., Münnich, K. O. and Münnich, M. 1980 A multi-counter system for high precision carbon-14 measurements. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 10th International 14C Conference. Radiocarbon 22(2): 442447.Google Scholar
Stuiver, M. 1980 14C distribution in the Atlantic Ocean. Journal of Geophysical Research 85: 27112718.Google Scholar
Stuiver, M. and Polach, H. 1977 Discussion: Reporting of 14C data. Radiocarbon 19(3): 355363.Google Scholar