Published online by Cambridge University Press: 18 July 2016
A living spruce tree was collected near the explosion center of the Tunguska event that occurred in 1908. We measured annual ring width and studied anatomical features to reconstruct the possible vegetational changes caused by the biological aftereffects of the Tunguska explosion. δ14C of annual rings from 1908 to 1910 was measured with a Tandetron accelerator mass spectrometer. The annual ring width decreased rapidly in 1908–1912, drastically increased in 1913, and decreased gradually thereafter. Traumatic resin ducts were observed in the transition zone between early- and latewood of the annual ring formed in 1908. We thus reconstruct these vegetational changes in the Tunguska forest: the Tunguska explosion damaged forest trees severely for ca. 3 yr, releasing rich nutrients from burned plants into the soil, and subsequently the vegetation was stimulated to recover by decreased socio-biological competition and better lighting conditions. δ14C values range from −28.2 to −1.5% for Tunguska spruce, and from −29.7 to 12.6% for Hinoki cypress. These fluctuations are within the ranges presented in Stuiver and Becker (1993), suggesting no evidence of anomalies of cometary origin in carbon isotopic composition. We found no significant difference between δ14C of Tunguska spruce and of Hinoki cypress.