Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-05T12:41:43.056Z Has data issue: false hasContentIssue false

Transect Along 24°n Latitude of 14C in Dissolved Inorganic Carbon in the Subtropical North Atlantic Ocean

Published online by Cambridge University Press:  18 July 2016

Jeffrey P. Severinghaus
Affiliation:
Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York 10964 USA
Wallace S. Broecker
Affiliation:
Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York 10964 USA
Tsung-Hung Peng
Affiliation:
Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida 33149 USA
Georges Bonani
Affiliation:
ETH/AMS Facility, Institut für Teilchenphysik, Eidgenössische Technische Hochschule Hönggerberg, CH-8093 Zürich, Switzerland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The distribution of bomb-produced 14C in the ocean provides a powerful constraint for circulation models of upper ocean mixing. We report 14C measurements from an east-west section of the main thermocline at 24°N latitude in the subtropical North Atlantic Ocean in summer 1992, and one profile from the Gulf of Mexico in 1993. Observed gradients reflect the transient invasion of bomb 14C into the thermocline via mixing along isopycnals from the poleward outcrop, with progressively more sluggish mixing at greater depths. A slight deepening of the profile is observed over the 20-yr period since the GEOSECS survey at one location where the comparison is possible.

Type
14C Cycling and the Oceans
Copyright
Copyright © the Arizona Board of Regents on behalf of the University of Arizona 

References

REFERENCES

Broecker, W. S., Peng, T.-H., Östlund, G. and Stuiver, M. 1985 The distribution of bomb radiocarbon in the ocean. Journal of Geophysical Research 90: 69536970.CrossRefGoogle Scholar
Broecker, W. S., Sutherland, S., Smethie, W., Peng, T.-H. and Östlund, G. 1995 Oceanic radiocarbon: Separation of the natural and bomb components. Global Biogeochemical Cycles 9: 263288.CrossRefGoogle Scholar
Ledwell, J. R., Watson, A. J. and Law, C. S. 1993 Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment. Nature 364: 701703.Google Scholar
Nydal, R. and Løvseth, K. 1983 Tracing bomb 14C in the atmosphere 1962–1980. Journal of Geophysical Research 88: 36213642.Google Scholar
Östlund, H. G. 1983 TTO North Atlantic Studies, Tritium and Radiocarbon. Data Release 83–85. Tritium Laboratory, University of Miami, Florida.Google Scholar
Parilla, G., Lavin, A., Bryden, H., Garcia, M. and Millard, R. 1994 Rising temperatures in the subtropical North Atlantic Ocean over the past 35 years. Nature 369: 4851.Google Scholar
Sarmiento, J. L. 1983 A tritium box model of the North Atlantic Thermocline. Journal of Physical Oceanography 13: 12691274.Google Scholar
Siegenthaler, U. and Sarmiento, J. L. 1993 Atmospheric carbon dioxide and the ocean. Nature 365: 119125.CrossRefGoogle Scholar
Stuiver, M. and Polach, H. A. 1977 Discussion: Reporting of C-14 data. Radiocarbon 19(3): 355363.CrossRefGoogle Scholar
Stuiver, M., and Östlund, H. G. 1980 GEOSECS Atlantic Radiocarbon. Radiocarbon 22(1): 124.CrossRefGoogle Scholar