Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-23T05:31:16.584Z Has data issue: false hasContentIssue false

Towards a Deeper Understanding of How Carbonate Isotopes (14C, 13C, 18O) Reflect Environmental Changes: A Study with Recent 210Pb-Dated Sediments of the Plitvice Lakes, Croatia

Published online by Cambridge University Press:  18 July 2016

Nada Horvatinčić*
Affiliation:
Ruder Bošković Institute, Bijenička 54, 10002 Zagreb, Croatia
Jadranka Barešić
Affiliation:
Ruder Bošković Institute, Bijenička 54, 10002 Zagreb, Croatia
Slavica Babinka
Affiliation:
Leibniz Institute for Applied Geosciences, Stilleweg 2, 30655 Hannover, Germany
Bogomil Obelić
Affiliation:
Ruder Bošković Institute, Bijenička 54, 10002 Zagreb, Croatia
Ines Krajcar Bronić
Affiliation:
Ruder Bošković Institute, Bijenička 54, 10002 Zagreb, Croatia
Polona Vreča
Affiliation:
Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
Axel Suckow
Affiliation:
Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia Now at: International Atomic Energy Agency, Wagramerstrasse 5, A-1400 Vienna, Austria
*
Corresponding author. Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Five short cores (top 40–45 cm of sediment) from 4 lakes of the Plitvice Lakes system (Croatia) were measured for 210Pb, 137Cs, a14C, δ13C, and δ18O in order to study the influence of environmental changes on the sediment system in small and large lakes. Sediment chronology based on the constant flux (CF) 210Pb model was the most reliable. Lake sediments consisted mainly of autochthonous carbonates with higher sedimentation rates in small lakes. Sediments from 2 large lakes, Prošće and Kozjak, showed constant stable isotope profiles for the carbonate fraction and full agreement between the 137Cs and 210Pb chronologies. Sediments from 2 small lakes, Gradinsko and Kaluderovac, showed synchronous increases in 14C and δ13C and disturbed 137Cs records. All lakes showed an increase in a14C in the carbonate sediments above the first occurrence of 137Cs, which was interpreted as a damped (~10 pMC increase in a14C) and decades-delayed consequence of the bomb-induced increase in a14C in atmospheric CO2. For the small lakes, increased δ13C in the last 2 decades and part of the a14C increase is probably due to an increase in primary productivity, which enhanced biologically induced calcite precipitation with concomitant changes in the carbon isotopic composition of carbonate sediments. δ13C values of a near-shore sediment core close to the confluence of one of the tributaries of Lake Kozjak showed that the carbonates in this core are a mixture of autochthonous and eroded allochthonous mineral carbonate. This core had a higher fraction of organic material. The sedimentation rate at this core site was high, but rates could not be quantified by 210Pb, 137Cs, or 14C.

Type
Articles
Copyright
Copyright © 2008 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Andrews, JE, Brasier, AT. 2005. Seasonal records of climatic change in annually laminated tufas: short review and future prospects. Journal of Quaternary Science 20(5):411–21.CrossRefGoogle Scholar
Andrews, JE, Riding, R, Dennis, PF. 1997. The stable isotope record of environmental and climatic signals in modern terrestrial microbial carbonates from Europe. Palaeogeography, Palaeoclimatology, Palaeoecology 129(1–2):171–89.Google Scholar
Appleby, PG, Oldfield, F. 1992. Application of 210Pb to sedimentation studies. In: Ivanovich, M, Harmon, RS, editors. Uranium Series Disequilibrium. Applications to Earth, Marine and Environmental Sciences. Oxford: Clarendon Press. p 731–78.Google Scholar
Brenner, M, Whitmore, TJ, Curtis, JH, Hoddel, DA, Schelske, CL. 1999. Stable isotope (δ13C and δ15N) signatures of sedimented organic matter as indicators of historic lake trophic state. Journal of Paleolimnology 22(2):205–21.Google Scholar
Brenner, M, Schelske, CL, Keenan, LW. 2001. Historical rates of sediment and nutrient accumulation in marshes of the Upper St. Johns River Basin, Florida, USA. Journal of Paleolimnology 26(3):241–57.Google Scholar
Brenner, M, Hodell, DA, Leyden, BW, Curtis, JH, Kenney, WF, Gu, B, Newman, JM. 2006. Mechanisms for organic matter and phosphorus burial in sediments of a shallow, subtropical, macrophyte-dominated lake. Journal of Paleolimnology 35(1):129–48.Google Scholar
Chafetz, HS, Lawrence, JR. 1994. Stable isotopic variability within modern travertines. Géographie Physique et Quaternaire 48(3):257–73.Google Scholar
Chafetz, HS, Srdoč, D, Horvatinčić, N. 1994. Early diagenesis of Plitvice Lakes waterfall and barrier travertine deposits. Géographie Physique et Quaternaire 48(3): 247–55.Google Scholar
Crusius, J, Anderson, RF. 1991. Immobility of 210Pb in Black Sea sediments. Geochimica et Cosmochimica Acta 55(1):327–33.CrossRefGoogle Scholar
Deines, P, Langmuir, D, Harmon, RS. 1974. Stable carbon isotope ratios and the existence of a gas phase in the evolution of carbonate ground waters. Geochimica et Cosmochimica Acta 38(7):1147–64.Google Scholar
Emeis, K-C, Richnow, H-H, Kempe, S. 1987. Travertine formation in Plitvice National Park, Yugoslavia: chemical versus biological control. Sedimentology 34(4):595609.Google Scholar
Genty, D, Massault, M. 1999. Carbon transfer dynamics from bomb 14C and δ13C time series of a laminated stalagmite from SW France – modelling and comparison with other stalagmite records. Geochimica et Cosmochimica Acta 63(10):1537–48.CrossRefGoogle Scholar
Genty, D, Vokal, B, Obelić, B, Massault, M. 1998. Bomb 14C time history recorded in two modern stalagmites – importance for soil organic matter dynamics and bomb 14C distribution over continents. Earth and Planetary Science Letters 160(3–4):795809.CrossRefGoogle Scholar
Genty, D, Baker, A, Massault, M, Proctor, C, Gilmour, M, Pons-Branchu, E, Hamelin, B. 2001. Dead carbon in stalagmites: carbonate bedrock paleodissolution vs. ageing of soil organic matter. Implications for 13C variations in speleothems. Geochimica et Cosmochimica Acta 65:3443–57.CrossRefGoogle Scholar
Geyh, MA, Merkt, J, Müller, H. 1971. Sediment-, Pollenund Isotopenanalysen an jahreszeitlich geschichteten Ablagerungen im zentralen Teil des Schleinsees. Archiv für Hydrobiologie 69:366–99. In German.Google Scholar
Hammarlund, D, Aravena, R, Barnekow, L, Buchardt, B, Possnert, G. 1997. Multi-component carbon isotope evidence of early Holocene environmental change and carbon-flow pathways from a hard-water lake in northern Sweden. Journal of Paleolimnology 18(3): 219–33.Google Scholar
Harlacher, R, Voigt, G. 1994. Distribution of radiocaesium activities in the waters of a Bavarian chain of lakes. Radiation and Environmental Biophysics 33(4):365–72.Google Scholar
Herczeg, AL, Smith, AK, Dighton, JC. 2001. A 120 year record of changes in nitrogen and carbon cycling in Lake Alexandrina, south Australia: C:N, δ15N and δ13C in sediments. Applied Geochemistry 16(1):7384.Google Scholar
Hodell, DA, Schelske, CL, Fahnestiel, GL, Robbins, LL. 1998. Biologically induced calcite and its isotopic composition in Lake Ontario. Limnology and Oceanography 43(2):187–99.Google Scholar
Horvatinčić, N, Srdoč, D, Šilar, J, Tvrdíková, H. 1989. Comparison of the 14C activity of groundwater and recent tufa from karst areas in Yugoslavia and Czechoslovakia. Radiocarbon 31(3):884–92.Google Scholar
Horvatinčić, N, Čalić, R, Geyh, M. 2000. Interglacial growth of tufa in Croatia. Quaternary Research 53(2): 185–95.Google Scholar
Horvatincic, N, Krajcar Bronić, I, Obelić, B. 2003. Differences in the 14C age, δ13C and δ18O of Holocene tufa and speleothem in the Dinaric karst. Palaeogeography Palaeoclimatology Palaeoecology 193(1):139–57.CrossRefGoogle Scholar
Horvatinčić, N, Barešić, J, Krajcar Bronić, I, Obelić, B. 2004. Measurement of low 14C activities in a liquid scintillation counter in the Zagreb Radiocarbon Laboratory. Radiocarbon 46(1):105–16.CrossRefGoogle Scholar
Horvatinčić, N, Briansó, JL, Obelić, B, Barešić, J, Krajcar Bronić, I. 2006a. Study of pollution of the Plitvice Lakes by water and sediment analyses. Water, Air & Soil Pollution: Focus 6(5–6):475–85.Google Scholar
Horvatinčić, N, Barešić, J, Obelić, B, Krajcar Bronić, I, Briansó, JL. 2006b. Eutrophication process in the Plitvice Lakes, Croatia, as a consequence of anthropogenic pollution and/or natural processes. In: Onac, BP, Tamas, T, Constantin, S, Persolu, A, editors. Archives of Climate Change in Karst. Proceedings of the Symposium Climate Change: The Karst Record (IV). 26–29 May 2006, Baile Herculane, Romania. Leesburg, Virginia, USA: Karst Waters Institute. p 211–4.Google Scholar
Kempe, S, Emeis, K. 1985. Carbonate chemistry and the formation of Plitvice Lakes. Mitteilungen des Geologisch-Paläontologischen Institutes der Universität Hamburg 58:351–83.Google Scholar
Krajcar Bronić, I, Horvatinčić, N, Srdoč, D, Obelić, B. 1986. On the initial 14C activity in karst aquifers with short mean residence time. Radiocarbon 28(2A):436–40.CrossRefGoogle Scholar
Krajcar Bronić, I, Horvatinčić, N, Srdoč, D, Obelić, B. 1992. Experimental determination of the 14C initial activity of calcareous deposits. Radiocarbon 34(3): 593601.Google Scholar
Last, WM, Smol, JP, editors. 2001. Tracking Environmental Changes Using Lake Sediments. Volume 2: Physical and Geochemical Methods. Dordrecht: Kluwer Academic Publishers. 528 p.Google Scholar
Lee, C, McKenzie, JA, Sturm, M. 1987. Carbon isotope fractionation and changes in the flux and composition of particulate matter resulting from biological activity during a sediment trap experiment in Lake Greifen, Switzerland. Limnology and Oceanography 32(1): 8396.Google Scholar
Levin, I, Kromer, B. 1997. Twenty years of atmospheric 14CO2 observations at Schauinsland station, Germany. Radiocarbon 39(2):205–18.Google Scholar
Mayr, C, Fey, M, Haberzettl, T, Janssen, S, Lücke, A, Maidana, NI, Ohlendorf, C, Schäbitz, F, Schleser, GH, Struck, U, Wille, M, Zolitschka, B. 2005. Palaeoenvironmental changes in southern Patagonia during the last millennium recorded in lake sediments from Laguna Azul (Argentina). Palaeogeography, Palaeoclimatology, Palaeoecology 228(3–4):203–27.Google Scholar
McCrea, JM. 1950. On the stable isotopic chemistry of carbonates and a paleotemperature scale. The Journal of Chemical Physics 18:849–57.Google Scholar
McGeehin, J, Burr, GS, Hodgins, G, Bennett, SJ, Robbins, JA, Morehead, N, Markewich, H. 2004. Stepped-combustion 14C dating of bomb carbon in lake sediment. Radiocarbon 46(2):893900.Google Scholar
McKenzie, JA. 1985. Carbon isotopes and productivity in the lacustrine and marine environment. In: Stumm, W, editor. Chemical Processes in Lakes. New York: John Wiley and Sons. p 99118.Google Scholar
Meyers, PA. 1994. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chemical Geology 114(3–4):289302.Google Scholar
Mook, WG, van der Plicht, J. 1999. Reporting 14C activities and concentrations. Radiocarbon 41(3):227–39.Google Scholar
Neumann, T, Stögbauer, A, Walpersdorf, E, Stüben, D, Kunzendorf, H. 2002. Stable isotopes in recent sediments of Lake Arendsee, NE Germany: response to eutrophication and remediation measures. Palaeogeography, Palaeoclimatology, Palaeoecology 178(1–2):7590.Google Scholar
Obelić, B, Horvatinčić, N, Barešić, J, Briansó, JL, Babinka, S, Suckow, A. 2005. Anthropogenic pollution in karst lake sediments (Croatia). In: Özkul, M, Yagiz, S, Jones, B, editors. Proceedings of 1st International Symposium on Travertine. Denizli: Kozan Ofset Matbaaçlk San. ve Tic. Ltd. Ankara 2005. p 188–96.Google Scholar
Olsson, IU. 1979. The radiocarbon contents of various reservoirs. In: Berger, R, Suess, HE, editors. Radiocarbon Dating. Proceedings of the Ninth International Conference Los Angeles and La Jolla, 1976. Berkeley: University of California Press. p 613–8.Google Scholar
Olsson, IU, Vasari, Y. 1995. The long-term response of submerged plants in the hard-water lake, Säynäjälampi, to the bomb-radiocarbon injection. PACT 50:377–83.Google Scholar
Pennington, W, Tutin, TG, Cambray, RS, Fisher, EM. 1973. Observations on lake sediment using fallout 137Cs as a tracer. Nature 242(5396):324–6.CrossRefGoogle Scholar
Petrik, M. 1958. Prinosi hidrologiji Plitvica (Contributions to the Hydrology of the Plitvice Lakes). In: Šafar, J, editor. Plitvička jezera, Nacionalni park. Grafički zavod Hrvatske, Zagreb. p 49172. In Croatian with English and German abstract.Google Scholar
Schelske, CL, Hodell, DA. 1991. Recent changes in productivity and climate of Lake Ontario detected by isotopic analysis of sediments. Limnology and Oceanography 36(5):961–75.CrossRefGoogle Scholar
Srdoč, D, Horvatinčić, N, Obelić, B, Krajcar, I, Sliepčević, A. 1985. Procesi taloženja kalcita u krškim vodama s posebnim osvrtom na Plitvička jezera (Calcite deposition processes in karstwaters with special emphasis on the Plitvice Lakes, Yugoslavia). Carsus Iugoslaviae (Krš Jugoslavije) 11(4–6):101204. In Croatian with English abstract.Google Scholar
Srdoč, D, Obelić, B, Horvatinčić, N, Krajcar Bronić, I, Marčenko, E, Merkt, J, Wong, HK, Sliepčević, A. 1986a. Radiocarbon dating of lake sediments from two karst lakes in Yugoslavia. Radiocarbon 28(2A):495502.CrossRefGoogle Scholar
Srdoč, D, Krajcar Bronić, I, Horvatinčić, N, Obelić, B. 1986b. Increase of 14C activity of dissolved inorganic carbon along the river course. Radiocarbon 28(2A): 515–21.Google Scholar
Srdoč, D, Horvatinčić, N, Ahel, M, Giger, W, Schaffner, C, Krajcar Bronić, I, Petricioli, D, Pezdič, J, Marčenko, E, Plenković-Moraj, A. 1992. Anthropogenic influence on the 14C activity and other constituents of recent lake sediments: a case study. Radiocarbon 34(3):585–92.Google Scholar
Srdoč, D, Osmond, JK, Horvatinčić, N, Dabous, AA, Obelić, B. 1994. Radiocarbon and uranium-series dating of the Plitvice Lakes travertines. Radiocarbon 36(2):203–19.Google Scholar
Suckow, A. 2003. LabData: a database and laboratory management system for isotope hydrology, geochronology and geochemistry. In: International Symposium on Isotope Hydrology and Integrated Water Resources Management, 19–23 May 2003. IAEA-CN-104/P-81. Vienna: IAEA.Google Scholar
Suckow, A, Gäbler, HE. 1997. Radiometric dating and heavy metal content of a recent sediment core from Lake Trenntsee in northeastern Germany. Isotopes in Environmental and Health Studies 33(4):367–76.Google Scholar
Suckow, A, Dumke, I. 2001. A database system for geochemical, isotope hydrological, and geochronological laboratories. Radiocarbon 43(2A):325–37.Google Scholar
Suckow, A, Treppke, U, Wiedicke, M, Weber, M. 2001. Bioturbation coefficients of deep-sea sediments from the Peru Basin determined by gamma spectrometry of 210Pbexc . Deep-Sea Research II 48(17–18):3569–92.Google Scholar
Vreča, P. 2003. Carbon cycling at the sediment-water interface in a eutrophic mountain lake (Jezero na Planini pri Jezeru, Slovenia). Organic Geochemistry 34(5): 671–80.CrossRefGoogle Scholar
Vreča, P, Muri, G. 2006. Changes in accumulation of organic matter and stable carbon and nitrogen isotopes in sediments of two Slovenian mountain lakes (Lake Ledvica and Lake Planina) induced by eurotrophication changes. Limnology and Oceanography 51(1/2): 781–90.Google Scholar
Wan, GJ, Bai, ZG, Qing, H, Mather, JD, Huang, RG, Wang, HR, Tang, DG, Xiao, BH. 2003. Geochemical records in recent sediments of Lake Erhai: implications for environmental changes in a low latitude-high altitude lake in southwest China. Journal of Asian Earth Sciences 21(5):489502.CrossRefGoogle Scholar
Wigley, TML, Plummer, LN, Pearson, FJ Jr. 1978. Mass transfer and carbon isotope evolution in natural water systems. Geochimica et Cosmochimica Acta 42(8): 1117–39.CrossRefGoogle Scholar