Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T17:12:11.187Z Has data issue: false hasContentIssue false

Temporal and Spatial Variations of Freshwater Reservoir Ages in the Loire River Watershed

Published online by Cambridge University Press:  01 July 2016

C Coularis
Affiliation:
EDF R&D, Laboratoire National d’Hydraulique et Environnement, 6 quai Wattier, F-78401 Chatou, France. Laboratoire des Sciences du Climat et de l’Environnement/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Avenue de la Terrasse, Bâtiment 12, F-91190 Gif-sur-Yvette, France.
N Tisnérat-Laborde*
Affiliation:
Laboratoire des Sciences du Climat et de l’Environnement/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Avenue de la Terrasse, Bâtiment 12, F-91190 Gif-sur-Yvette, France.
L Pastor
Affiliation:
EDF R&D, Laboratoire National d’Hydraulique et Environnement, 6 quai Wattier, F-78401 Chatou, France.
F Siclet
Affiliation:
EDF R&D, Laboratoire National d’Hydraulique et Environnement, 6 quai Wattier, F-78401 Chatou, France.
M Fontugne
Affiliation:
Laboratoire des Sciences du Climat et de l’Environnement/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Avenue de la Terrasse, Bâtiment 12, F-91190 Gif-sur-Yvette, France.
*
*Corresponding author. Email: [email protected].

Abstract

In order to map the freshwater reservoir effect (FRE) variability of the Loire River and its tributaries, spatial and temporal carbon isotope (13C and 14C) analyses of the dissolved inorganic carbon (DIC) were conducted. Sites were selected to represent the diversity of geological settings, soil type, and land use. Results show a large spatial variability of 14C FRE ranging between 135 and 2251±30 yr, objectively correlated to DIC contents and alkalinity. Deeper investigations of the relationship between 14C activity of DIC and environmental variables show that the geological substrate is the dominant factor in the 14C reservoir effect, and far more influential than the river flow discharge.

Type
Research Article
Copyright
© 2016 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abonyi, A, Leitão, M, Lançon, AM, Padisák, J. 2012. Phytoplankton functional groups as indicators of human impacts along the River Loire (France). Hydrobiologia 698(1):233249.Google Scholar
Abonyi, A, Leitão, M, Stankovic, I, Borics, G, Varbiro, G, Padisák, J. 2014. A large river (River Loire, France) survey to compare phytoplankton functional approaches: Do they display river zones in similar ways? Ecological Indicators 46:1122.Google Scholar
Aertgeerts, G, Béchennec, F, Conil, P, Régnault, S, Mary, G, Papillard, M, Pivette, B, Redois, F, Viaud, JM. 2011a. Identification et diagnostic du patrimoine géologique en Pays de la Loire. Inventaire des sites géologiques remarquables. Annexe 2 - tome 3 - Fiches argumentaires de Mayenne. 212 p.Google Scholar
Aertgeerts, G, Béchennec, F, Conil, P, Régnault, S, Mary, G, Papillard, M, Pivette, B, Redois, F, Viaud, JM. 2011b. Identification et diagnostic du patrimoine géologique en pays de la Loire. Inventaire des sites géologiques remarquables. Rapport Final. Annexe 2 - tome 4: Fiches argumentaires de Sarthe. 195 p.Google Scholar
Aleya, L, Desmolles, F, Michard, M, Bonnet, M-P, Devaux, J. 1994. The deterministic factors of the Microcystis aeruginosa blooms over a biyearly survey in the hypereutrophic reservoir of Villerest (Roanne, France). Archiv fuer Hydrobiologie 120:489515.Google Scholar
Amiotte-Suchet, P, Aubert, D, Probst, JL, Gauthier-Lafaye, F, Probst, A, Andreux, F, Viville, D. 1999. δ13C pattern of dissolved inorganic carbon in a small granitic catchment: the Strengbach case study (Vosges mountains, France). Chemical Geology 159(1–4):129145.Google Scholar
Anonymous. 1997. Les eaux minérales et le gaz carbonique. Note Technique DNEMT N° 10 DNEMT & BRGM. Paris: Ministére de l’Economie, des Finances et de l’Industrie. 23p.Google Scholar
Ascough, PL, Cook, GT, Church, MJ, Dunbar, E, Einarsson, A, McGovern, TH, Gugmore, AJ, Perdikaris, S, Hastie, H, Fridriksson, A, Gestsdottir, H. 2010. Temporal and spatial variations in freshwater 14C reservoir effects: Lake Mývatn, northern Iceland. Radiocarbon 52(2–3):10981112.Google Scholar
Assayag, N. 2006. Traçage isotopique des sources, puits et de la réactivité du CO2 dans les réservoirs géologiques [PhD thesis]. Institut Physique du Globe de Paris. 195 p.Google Scholar
Aucour, AM, Sheppard, SMF, Guyomar, O, Wattelet, J. 1999. Use of 13C to trace origin and cycling of inorganic carbon in the Rhône river system. Chemical Geology 159:87105.CrossRefGoogle Scholar
Barnes, RT, Raymond, P. 2009. The contribution of agricultural and urban activities to inorganic carbon fluxes within temperate watersheds. Chemical Geology 266:327336.Google Scholar
Boineau, R, Maisonneuve, J. 1971. Les sources minerales du Massif Central français et leur cadre géologique. 17 p.Google Scholar
Bonsall, C, Cook, GT, Hedges, REM, Higham, TFG, Pickard, C, Radovanovic, I. 2004. Radiocarbon and stable isotope evidence of dietary change from the Mesolithic to the Middle Ages in the Iron Gates: new results from Lepenski Vir. Radiocarbon 46(1):293300.Google Scholar
Boudin, M, Van Strydonck, M, Crombé, P. 2009. Radiocarbon dating of pottery food crusts: reservoir effect or not? The case of the Swifterbant pottery from Doel “Deurganckdok” (Belgium). In Crombé P, Van Strydonck M, Sergant J, Boudin M, Bats M, editors. Chronology and Evolution within the Mesolithic of North-West Europe: Proceedings of an International Meeting. Newcastle Upon Tyne: Cambridge Scholars Publishing. p 727745.Google Scholar
Broecker, WS, Walton, A. 1959. The geochemistry of 14C in freshwater systems. Geochimica et Cosmochimica Acta 16:1538.Google Scholar
Buhl, D, Neuser, RD, Richter, DK, Riedel, D, Roberts, B, Strauss, H, Veizer, J. 1991. Nature and nurture: environmental isotope story of the river Rhine. Naturwissenschaften 78:337346.Google Scholar
Cochet, A, Belkessa, R. 1972. Plaine alluviale du val d’Allier au nord de Moulins. Etude hydrogéologique préliminaire. 21 p.Google Scholar
Cook, GT, Bonsall, C, Hedges, REM, McSweeney, K, Boroneant, V, Pettitt, PB. 2001. A freshwater diet-derived 14C reservoir effect at the Stone Age sites in the Iron Gates Gorge. Radiocarbon 43(2A):453460.Google Scholar
Cottereau, E, Arnold, M, Moreau, C, Baqué, D, Bavay, D, Caffy, I, Comby, C, Dumoulin, J-P, Hain, S, Perron, M, Salomon, J, Setti, V. 2007. Artemis, the new 14C AMS at LMC14 in Saclay, France. Radiocarbon 49(2):291299.Google Scholar
Couderc, J-M. 1968. Les phénomènes d’hydrologie karstique en Touraine. Norois 58:227251.Google Scholar
Deevey, ESJ, Gross, MS, Hutchinson, GE, Kraybill, HL. 1954. The natural C14 contents of materials from hard-water lakes. Geology 40:285288.Google Scholar
Derruau, M. 1949. La formation du relief de la Grande Limagne (Première partie). Revue de Géographie Alpine 37(4):599670.Google Scholar
Fernandes, R, Rinne, C, Nadeau, M-J, Grootes, P. 2014. Towards the use of radiocarbon as a dietary proxy: establishing a first wide-ranging radiocarbon reservoir effects baseline for Germany. Environmental Archaeology. DOI:10.1179/1749631414Y.0000000034.Google Scholar
Figueres, G, Martin, JM, Meybeck, M, Seyler, P. 1985. A comparative study of mercury contamination in the Tagus Estuary (Portugal) and major French Estuaries (Gironde, Loire, Rhône). Estuarine, Coastal and Shelf Science 20:183203.Google Scholar
Fontes, JC, Gasse, F. 1991. PALHYDAF (Palaeohydrology in Africa) program: objectives, methods, major results. Palaeogeography, Palaeoclimatology, Palaeoecology 84:191215.Google Scholar
Fontugne, M, Abril, G, Bacon, A, Baumier, D, Commarieu, MV, Connan, O, Etcheber, H, Germain, P, Hébert, D, Jean-Baptiste, P, Lozay, C, Maro, D, Olivier, A, Paterne, M, Podevin, V, Poirier, D, Rozet, M, Tenailleau, L. 2007. Transferts de carbone 14 et tritium entre la Loire et l’atmosphère. Rapport final LORA: Contrat de partenariat EDF/CNRS. 118 p.Google Scholar
Fontugne, M, Guichard, F, Bentaleb, I, Strechie, C, Lericolais, G. 2009. Variations in 14C reservoir ages of Black Sea waters and sedimentary organic carbon during anoxic periods: influence of photosynthetic versus chemoautotrophic production. Radiocarbon 51(3):969976.Google Scholar
Garnier, J, Servais, P, Billen, G, Akopian, M, Brion, N. 2001. Lower Seine river and estuary (France) carbon and oxygen budgets during low flow. Estuaries 24(6B):964976.Google Scholar
Grosbois, C. 1998. Géochimie des eaux de la Loire: contributions naturelles et anthropiques et quantification de l’érosion [PhD thesis]. Université François Rabelais. 232 p.Google Scholar
Hall, BL, Henderson, GM. 2001. Use of uranium–thorium dating to determine past 14C reservoir effects in lakes: examples from Antarctica. Earth and Planetary Science Letters 193:565577.Google Scholar
Hart, JP, Lovis, WA, Urquhart, GR, Reber, EA. 2013. Modeling freshwater reservoir offsets on radiocarbon-dated charred cooking residues. American Antiquity 78(3):536552.Google Scholar
Higham, T, Warren, R, Belinskij, A, Härke, H, Wood, R. 2010. Radiocarbon dating , stable isotope analysis, and diet-derived offsets in 14C ages from the Klin-Yar site, Russian North Caucasus. Radiocarbon 52(2–3):653670.Google Scholar
Hollund, HI, Higham, T, Belinskij, A, Korenevskij, S. 2010. Investigation of palaeodiet in the North Caucasus (South Russia) Bronze Age using stable isotope analysis and AMS dating of human and animal bones. Journal of Archaeological Science 37:29712983.CrossRefGoogle Scholar
Jugnia, L, Debroas, D, Romagoux, J, Dévaux, J. 2004. Initial results of remediation activities to restore hypereutrophic Villerest Reservoir (Roanne, France), Lakes and Reservoirs. Research and Management 9:109117.Google Scholar
Keaveney, E, Reimer, P. 2012. Understanding the varaibility in freshwater radiocarbon reservoir offsets: a cautionary tale. Journal of Archaelogical Science 39(5):13061316.Google Scholar
Landry, J. 1988. Barrage du Veurdre sur l’Allier. Reconnaissances géologiques, géotechniques et hydrogéologiques préliminaires. Rapport de synthèse. 7 p.Google Scholar
Leboucher, V, Orr, J, Jean-Baptiste, P, Arnold, M, Monfray, P, Tisnerat-Laborde, N, Poisson, A, Duplessy, J-C. 1999. Oceanic radiocarbon between Antarctica and South Africa along WOCE Section 16 at 30°E. Radiocarbon 41(1):5173.Google Scholar
Levin, I, Kromer, B, Hammer, S. 2013. Atmospheric Δ14CO2 trend in Western European background air from 2000 to 2012. Tellus B 65:17.Google Scholar
Mansy, J-L, Guennoc, P, Robaszynski, F, Amédro, F, Auffret, J-P, Vidier, J-P, Lamarche, J, Lefevre, D, Somme, J, Brice, D, Mistiaen, B, Prud’Homme, A, Rohart, J-C, Vachard, D. 2008. Notice explicative de la carte géologique de la France (1/50000). Feuille Marquise (2nd édition). BRGM. 213 p.Google Scholar
Marang, L, Siclet, F, Luck, M, Maro, D, Tenailleau, L, Jean-Baptiste, P, Fourré, E, Fontugne, M. 2011. Modelling tritium flux from water to atmosphere: application to the Loire River. Journal of Environmental Radioactivity 102:244251.CrossRefGoogle Scholar
Minaudo, C, Moatar, F, Meybeck, M, Curie, F, Gassama, N, Leitao, M. 2013. Loire River eutrophication mitigation (1981–2011) measured by seasonal nutrients and algal biomass. IAHS Publication Symposia H:1-9.Google Scholar
Minaudo, C, Meybeck, M, Moatar, F, Gassama, N, Curie, F. 2015. Eutrophication mitigation in rivers: 30 years of trends and seasonality changes in biogeochemistry of the Loire River (1980–2012). Biogeosciences 12:25492563.CrossRefGoogle Scholar
Négrel, P, Petelet-Giraud, E, Barbier, J, Gautier, E. 2003. Surface water–groundwater interactions in an alluvial plain: chemical and isotopic systematics. Journal of Hydrology 277(3–4):248267.Google Scholar
Neveux, J, Lantoine, F. 1993. Spectrofluorometric assay of chlorophylls and phaeopigments using the least squares approximation technique. Deep-SeA Research I 40(9):17471765.Google Scholar
Oana, S, Deevey, ES. 1960. Carbon 13 in lake waters, and its possible bearing on paleolimnology. American Journal of Science 258A:253272.Google Scholar
Olsen, J, Heinemeier, J, Lübke, H, Lüth, F, Terberger, T. 2010. Dietary habits and freshwater reservoir effects in bones from a Neolithic NE German cemetery. Radiocarbon 52(2–3):635644.Google Scholar
Philippsen, B. 2012. Variability of freshwater reservoir effects. Implications for radiocarbon dating of prehistoric pottery and organisms from estuarine environments [PhD thesis]. Aarhus: Aarhus University. 237 p.Google Scholar
Philippsen, B. 2013. The freshwater reservoir effect in radiocarbon dating. Heritage Science 1:24.Google Scholar
Philippsen, B, Heinemeier, J. 2013. Freshwater reservoir effect variability in northern Germany. Radiocarbon 55(2–3):10851101.Google Scholar
Philippsen, B, Kjeldsen, H, Hartz, S, Paulsen, H, Clausen, I, Heinemeier, J. 2010. The hardwater effect in AMS 14C dating of food crusts on pottery. Nuclear Instruments and Methods in Physics Research B 268(7–8):995998.CrossRefGoogle Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Bertrand, CJH, Blackwell, PG, Buck, CE, Burr, GS, Cutler, KB, Damon, PE, Edwards, RL, Fairbanks, RG, Friedrich, M, Guilderson, TP, Hogg, AG, Hughen, KA, Kromer, B, McCormac, G, Manning, S, Bronk Ramsey, C, Reimer, RW, Remmele, S, Southon, JR, Stuiver, M, Talamo, S, Taylor, FW, van der Plicht, J, Weyhenmeyer, CE. 2004. IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46(3):10291058.Google Scholar
Rivé, K, Rad, S, Assayag, N. 2013. Carbon sources and water-rock interactions in the Allier River, France. Procedia Earth and Planetary Science 7:713716.CrossRefGoogle Scholar
SAGE. 2006. Forces et faiblesses. Approche cartographique du bassin de la Vienne. 81 p.Google Scholar
Sato, T, Miyajima, T, Ogawa, H, Umezawa, Y, Koike, I. 2006. Temporal variability of stable carbon and nitrogen isotopic composition of size-fractionated particulate organic matter in the hypertrophic Sumida River Estuary of Tokyo Bay, Japan. Estuarine, Coastal and Shelf Science 68(1–2):245258.Google Scholar
Shishlina, NI, van der Plicht, J, Hedges, REM, Zazovskaya, EP, Sevastyanov, VS, Chichagova, OA. 2007. The catacomb cultures of the North-West Caspian Steppe: 14C chronology, reservoir effect, and paleodiet. Radiocarbon 49(2):713726.Google Scholar
Siclet, F, Guesmia, M, Ciffroy, P, Reyss, JL, Fontugne, M, Lepetit, G, Jean-Baptiste, P, Drouadaine, L. 2002. Radionuclides in the Loire River estuary (France): sources, transport and fate. Radioprotection 37(C1):761767.Google Scholar
Sorey, ML, Evans, WC, Kennedy, BM, Farrar, CD, Hainsworth, LJ, Hausback, B. 1998. Carbon dioxide and helium emissions from a reservoir of magmatic gas beneath Mammoth Mountain, California. Journal of Geophysical Research 103(B7):15,30323.Google Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355363.Google Scholar
Sveinbjörnsdóttir, ÁE, Heinemeier, J, Arnorsson, S. 1995. Origin of 14C in Icelandic groundwater. Radiocarbon 37(2):551565.CrossRefGoogle Scholar
Van Strydonck, M, Ervynck, A, Vandenbruaene, M, Boudin, M. 2009. Anthropology and 14C analysis of skeletal remains from relic shrines: an unexpected source of information for Medieval archaeology. Radiocarbon 51(2):569577.Google Scholar