Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-19T03:37:39.835Z Has data issue: false hasContentIssue false

Tell Sabi Abyad, Syria: Radiocarbon Chronology, Cultural Change, and the 8.2 ka Event

Published online by Cambridge University Press:  18 July 2016

J van der Plicht*
Affiliation:
Center for Isotope Research, Groningen University, Groningen, the Netherlands. Faculty of Archaeology, Leiden University, Leiden, the Netherlands.
P M M G Akkermans
Affiliation:
Faculty of Archaeology, Leiden University, Leiden, the Netherlands.
O Nieuwenhuyse
Affiliation:
Faculty of Archaeology, Leiden University, Leiden, the Netherlands.
A Kaneda
Affiliation:
Faculty of Archaeology, Leiden University, Leiden, the Netherlands.
A Russell
Affiliation:
Faculty of Archaeology, Leiden University, Leiden, the Netherlands.
*
Corresponding author. Email: [email protected].
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

At Tell Sabi Abyad, Syria, we obtained a robust chronology for the 7th to early 6th millennium BC, the Late Neolithic. The chronology was obtained using a large set of radiocarbon dates, analyzed by Bayesian statistics. Cultural changes observed at ~6200 BC are coeval with the 8.2 ka climate event. The inhabitation remained continuous.

Type
Archaeology
Copyright
Copyright © The American Journal of Science 

References

Akkad, D. 2009. Escaping the drought. Syria Today 53: 23–9.Google Scholar
Akkermans, PMMG, Schwartz, GM. 2003. The Archaeology of Syria: From Complex Hunter-Gatherers to Early Urban Societies (ca. 16000–300 BC). Cambridge: Cambridge University Press. 486 p.Google Scholar
Akkermans, PMMG, Cappers, R, Cavallo, C, Nieuwenhuyse, O, Nilhamn, B, Otte, IN. 2006. Investigating the Early Pottery Neolithic of northern Syria: new evidence from Tell Sabi Abyad. American Journal of Archaeology 110(1):123–56.CrossRefGoogle Scholar
Akkermans, PMMG, van der Plicht, J, Nieuwenhuyse, O, Russell, A, Kaneda, A. 2009. Cultural transformation and the 8.2 ka event in Upper Mesopotamia. Pre-modern climate change: causes and responses. Conference, Copenhagen (proceedings forthcoming).Google Scholar
Akkermans, PMMG, van der Plicht, J, Nieuwenhuyse, O, Russell, A, Kaneda, A, Buitenhuis, H. 2010. Weathering climate change in the Near East: dating and Neolithic adaptations 8200 years ago. Antiquity, online project gallery: http://antiquity.ac.uk/projgall/plicht325/.Google Scholar
Alley, RB, Mayewski, PA, Sowers, T, Stuiver, M, Taylor, KC, Clark, PU. 1997. Holocene climatic instability: a prominent, widespread event 8200 yr ago. Geology 25(6):483–6.2.3.CO;2>CrossRefGoogle Scholar
Balter, M. 2010. In a cold snap, farmers turned to milk. Science 329(5998):1465.CrossRefGoogle Scholar
Barber, DC, Dyke, A, Hillaire-Marcel, C, Jennings, AE, Andrews, JT, Kerwin, MW, Bilodeau, G, McNeely, R, Southon, J, Morehead, MD, Gagnon, JM. 1999. Forcing of the cold event 8,200 years ago by catastrophic drainage of Laurentide lakes. Nature 400(6742):344–8.CrossRefGoogle Scholar
Bayliss, A. 2009. Rolling out revolution: using radiocarbon dating in archaeology. Radiocarbon 51(1):123–47.CrossRefGoogle Scholar
Bronk Ramsey, C. 2001. Development of the radiocarbon calibration program. Radiocarbon 43(2A):355–63.CrossRefGoogle Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337–60.CrossRefGoogle Scholar
Bruins, HJ, Nijboer, AJ, van der Plicht, J. 2011. Iron Age Mediterranean chronology: a reply. Radiocarbon 53(1):199220.CrossRefGoogle Scholar
Chen, H, Fleitman, D, Edwards, RL, Wang, X, Cruz, FW, Auler, AS, Mangini, A, Wang, Y, Kong, X, Burns, SJ, Matter, A. 2009. Timing and structure ofthe 8.2 kyr B.P. event inferred from δ18O records of stalagmites from China, Oman, and Brazil. Geology 37(11):1007–10.Google Scholar
Clarke, G, Leverington, D, Teller, J, Dyke, A. 2003. Superlakes, megafloods and abrupt climate change. Science 301(5635):922–3.CrossRefGoogle ScholarPubMed
deMenocal, PB. 2001. Cultural responses to climate change during the Late Holocene. Science 292(5517):667–73.CrossRefGoogle ScholarPubMed
Ellison, CRW, Chapman, MR, Hall, IR. 2006. Surface and deep ocean interactions during the cold climate event 8200 years ago. Science 312(5782):1929–32.CrossRefGoogle ScholarPubMed
Evershed, RP, Payne, S, Sherratt, AG, Copley, MS, Coolidge, J, Urem-Kotsu, D, Kotsakis, K, Ozdogan, M, Özdoǧan, AE, Nieuwenhuyse, O, Akkermans, PMMG, Bailey, D, Andeescu, R-R, Campbell, S, Farid, S, Hodder, I, Yalman, N, Özbaşaran, M, Erhan Biçakci, E, Garfinkel, Y, Levy, T, Burton, MM. 2008. Earliest date for milk use in the Near East and southeastern Europe linked to cattle herding. Nature 455(7212):528–31.CrossRefGoogle ScholarPubMed
Hormes, A, Blaauw, M, Dahl, SO, Nesje, A, Possnert, G. 2009. Radiocarbon wiggle-match dating of proglacial lake sediments—implications for the 8.2 ka event. Quaternary Geochronology 4(4):267–77.CrossRefGoogle Scholar
Jansen, E, Overpeck, J, Briffa, KR, Duplessy, J-C, Joos, F, Masson-Delmotte, V, Olago, D, Otto-Bliesner, B, Peltier, WR, Rahmstorf, S, Ramesh, R, Raynaud, D, Rind, D, Solomina, O, Villalba, R, Zhang, D. 2007. Chapter 6: Paleoclimate. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
Kleiven, HF, Kissel, C, Laj, C, Ninnemann, US, Richter, TO, Cortijo, E. 2008. Reduced North Atlantic Deep Water coeval with the Glacial Lake Agassiz freshwater outburst. Science 319(5859):60–4.CrossRefGoogle ScholarPubMed
Kobashi, T, Severinghaus, JP, Brook, EJ, Barnola, JM, Grachev, AM. 2007. Precise timing and characterization of abrupt climate change 8200 years ago from air trapped in polar ice. Quaternary Science Reviews 26(9–10):1212–22.CrossRefGoogle Scholar
Mook, WG, Streurman, HJ. 1983. Physical and chemical aspects of radiocarbon dating. In: First Symposium on 14C and Archaeology, Groningen. PACT 8:3155.Google Scholar
Morrill, C, Jacobsen, RM. 2005. How widespread were climate anomalies 8200 years ago? Geophysical Research Letters 32, L19701, doi:10.1029/2005GL023536.CrossRefGoogle Scholar
Nicolussi, K, Kaufmann, M, Melvin, TM, van der Plicht, J, Schiessling, P, Thurner, A. 2009. A 9111 year long conifer tree-ring chronology for the European Alps: a base for environmental and climatic investigations. The Holocene 19(6):909–20.CrossRefGoogle Scholar
Nieuwenhuyse, O, Akkermans, PMMG, van der Plicht, J. 2010. Not so coarse, nor always plain—the earliest pottery of Syria. Antiquity 84:7185.CrossRefGoogle Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Burr, GS, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Hajdas, I, Heaton, TJ, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, McCormac, FG, Manning, SW, Reimer, RW, Richards, DA, Southon, JR, Talamo, S, Turney, CSM, van der Plicht, J, Weyhenmeyer, CE. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51(4):1111–50.CrossRefGoogle Scholar
Rohling, EJ, Pälike, H. 2005. Centennial-scale climate cooling with a sudden cold event around 8,200 years ago. Science 434(7036):975–9.Google Scholar
Rosen, AM. 2007. Civilizing Climate: Social Responses to Climate Change in the Ancient Near East. Lanham: AltaMira Press. 224 p.Google Scholar
Russell, A. 2010. Retracing the steppes: a zooarchaeological analysis of changing subsistence patterns in the Late Neolithic at Tell Sabi Abyad, northern Syria, 6900 to 5900 BC [PhD thesis]. Leiden University.Google Scholar
Schmitt, GA, Jansen, E. 2006. The 8.2 kyr event. PAGES/CLIVAR Workshop Report. PAGES News 14:28–9.Google Scholar
Schwartz, P, Randall, D. 2003. An abrupt climate change scenario and its implications for United States national security. Available online: http://www.ems.org/climate/pentagon_climate_change.html#report.CrossRefGoogle Scholar
Spurk, M, Leuschner, HH, Baillie, MGL, Briffa, KR, Friedrich, M. 2002. Depositional frequency of German subfossil oaks: climatically and non-climatically induced fluctuations in the Holocene. The Holocene 12(6):707–15.CrossRefGoogle Scholar
Thomas, ER, Wolff, EW, Mulvaney, R, Steffensen, JP, Johnsen, SJ, Arrowsmith, C, White, JCW, Vaighn, B, Popp, T. 2007. The 8.2 ka event from Greenland ice cores. Quaternary Science Reviews 26(1–2):7081.CrossRefGoogle Scholar
van der Plicht, J, Bruins, HJ, Nijboer, AJ. 2009. The Iron Age around the Mediterranean: a high chronology perspective from the Groningen radiocarbon database. Radiocarbon 51(1):213–42.CrossRefGoogle Scholar
van Strydonck, M, Nelson, DE, Crombé, P, Bronk Ramsey, C, Scott, EM, van der Plicht, J, Hedges, REM. 1999. What's in a 14C date. In: Evin, J, Oberlin, C, Daugas, JP, Salles, JF, editors. Radiocarbon and Archaeology: Proceedings of the 3rd International Symposium. Lyon, 1998. p 433–40.Google Scholar
von Grafenstein, U, Erlenkeuser, H, Müller, J, Jouzel, J, Johnsen, J. 1998. The cold event 8200 years ago documented in oxygen isotope records of precipitation in Europe and Greenland. Climate Dynamics 14(2):7381.CrossRefGoogle Scholar
Weiss, H. 2003. The 8.2 ka abrupt climate change event and the origins of irrigation agriculture and surplus agro-production in Mesopotamia. Eos Transactions AGU 84/(46). Fall Meeting Supplement, abstract PP22C-01.Google Scholar
Weiss, H, Bradley, RS. 2001. What drives societal collapse? Science 291(5504):609–10.CrossRefGoogle ScholarPubMed
Weninger, B, Alram-Stern, E, Bauer, E, Clare, L, Danzeglocke, U, Jöris, O, Kubatzki, C, Rollefson, G, Todorova, H, van Andel, T. 2006. Climate forcing due to the 8200 cal yr BP event observed at Early Neolithic sites in the eastern Mediterranean. Quaternary Research 66(3):401–20.CrossRefGoogle Scholar
Wiersma, AP. 2008. Character and causes of the 8.2 ka climate event [PhD thesis]. Amsterdam: Free University of Amsterdam.Google Scholar
Wiersma, AP, Renssen, H. 2006. Model-data comparison for the 8.2 ka BP event: confirmation of a forcing mechanism by catastrophic drainage of Laurentide lakes. Quaternary Science Reviews 25(1–2):6388.CrossRefGoogle Scholar