Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-18T20:04:01.271Z Has data issue: false hasContentIssue false

A Supernova Shock Ensemble Model Using Vostok 10Be Radioactivity

Published online by Cambridge University Press:  18 July 2016

C. P. Sonett*
Affiliation:
Department of Planetary Sciences and Lunar and Planetary Laboratory, The University of Arizona Tucson, Arizona 85721 USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Analysis of the Vostok ice-core record of 10Be (Raisbeck et al. 1987) suggests that the sharply resolved increases in 10Be at 35 ka (kyr) and 60 ka are due to cosmic-ray (CR) increases. As an alternate to long-term solar modulation or strong decreases in the Earth's magnetic field, supernova (SN) forcing is qualitatively consistent with the generation of a forward-reverse shock ensemble from a spherical blast wave of age very approximately at 75 ka. This age agrees with Davelaar, Bleeker and Deerenberg's (1980) identification of 75 ka for the age of a North Polar Spur SN remnant. Confirmation would be the first geochemical detection of supernova forcing of spallogenic and perhaps cosmogenic isotope production in the atmosphere. The three 10Be increases can be satisfied by a modification of the Sonett, Morfill, and Jokipii (1987) model. This consists of 2 or 3 shock waves from a single SN event, which includes the first stage in the expansion, leading to a forward shock, S1+, and a pair of reverse waves, S1− and S2−. One reverse wave arises from the spherical expansion, itself, and the other is a reflected wave from a remnant precursor shell boundary from a more ancient SN. The model requires the solar system to be immersed in the ‘bubble’ of the earlier post-SN evolution, possibly affecting estimates of heliospheric boundary distance. However more recent analysis of Camp Century ice core data discloses only the 35 ka 10Be peak. This recent result compounds the difficulty of constructing a completely consistent model for the source of the Vostok spikes. This paper is written in the spirit of suggesting only one of possibly several different models, even within the subclass of SN models.

Type
Articles
Copyright
Copyright © The American Journal of Science 

References

Bard, E., Hamelin, B., Fairbanks, R. G. and Zindler, A. 1990 Calibration of the 14C time scale ove past 30,000 years using mass spectrometry U-Th ages from Barbados corals. Nature 345: 405410.CrossRefGoogle Scholar
Beer, J., Johnsen, S. J., Bonani, G., Finkel, R. C., Langway, C. G., Oeschger, H., Stauffer, B., Suter, M., and Wolfi, W. 1992 10Be Peaks as time markers in polar ice cores. In Bard, E. and Broecker, W. S., eds., The Last Deglaciation: Absolute and Radiocarbon Chronologies . NATO ASI Series I-2. Berlin Heidelberg, Springer-Verlag: 141153.CrossRefGoogle Scholar
Berkhuijsen, E. M. 1973 Galactic continuum loops and the diameter-surface brightness relation for supernova remnants. Astronomy and Astrophysics 24: 143.Google Scholar
Bonhommet, N. and Babkine, J. 1967 Sur la présence de directions inversées dans la Chaîne du Puys. Comptes Rendus de l'Academie des Sciences 264: 92.Google Scholar
Bonhommet, N. and Zahringer, J. 1969 Paleomagnetism and potassium argon age determinations of the Laschamp geomagnetic polarity reversal event. Earth and Planetary Science Letters 6: 4346.CrossRefGoogle Scholar
Borken, R. J. and Iwan, D. C. 1977 Spatial structure in the soft x-ray background as observed from OSO-8 and the north polar spur as a reheated supernova remnant. Astrophysical Journal 218: 511520.CrossRefGoogle Scholar
Boyer, D. W. 1960 An experimental study of the explosion generated by a pressurized sphere. Journal of Fluid Mechanics 9: 401.CrossRefGoogle Scholar
Brode, H. L. 1955 Numerical solutions of spherical blast waves. Journal of Applied Physics 26: 766.CrossRefGoogle Scholar
Brode, H. L. 1959 Blast wave from a spherical charge. Physics of Fluids 2: 217.CrossRefGoogle Scholar
Castagnoli, C. G., Bonino, G. and Miono, S. 1982 Thermoluminescence in sediments and historical supernovae explosions. Il Nuovo Cimento 5C: 488494.CrossRefGoogle Scholar
Colburn, D. S. and Sonett, C. P. 1965 Discontinuities in the solar wind. Space Science Reviews 5: 439.Google Scholar
Courant, R. and Friedrichs, K. O. 1948 Supersonic Flow and Shock Waves . Interscience. Also reprinted 1977 by Springer-Verlag.Google Scholar
Cox, D. P. and Anderson, P. R. 1982 Extended adiabatic blast waves and a model of the soft x-ray background. Astrophysical Journal 253: 268289.CrossRefGoogle Scholar
Davelaar, J., Bleeker, A. M. and Deerenberg, A J. M. 1980 X-ray characteristics of Loop I and the local interstellar medium. Astronomy and Astrophysics 92: 231237.Google Scholar
Egger, R. 1991 The North Polar Spur in the ROSAT/PSPC Survey. In Godhalekar, P. M., ed., Hot Gases in the Galaxy . RAL-91-082. Chilton Didcot, U. K., Rutherford Appleton Laboratory: 95105.Google Scholar
Friedman, M. P. 1961 A simplified analysis of spherical and cylindrical blast waves. Journal of Fluid Mechanics 11: 115.CrossRefGoogle Scholar
Higdon, J. C. 1981 The Cygnus “superbubble”: A supernova explosion in a tenuous intercloud medium. Astrophysical Journal 244: 8893.CrossRefGoogle Scholar
Higdon, J. C. and Lingenfelter, R. E. 1973 Sea sediments, cosmic rays, and pulsars. Nature 246: 403405.CrossRefGoogle Scholar
Kocharov, G. E., Konstantinov, A. N., Levchenko, V. A., Amnosov, A. E., Berezko, E. G. and Krymsky, G. F. 1991 Cosmic rays near the Earth from the supernova explosion. Preprint.Google Scholar
Kuo, Y. H. 1947 The propagation of a spherical or a cylindrical wave of finite amplitude and the production of shock waves. Quarterly of Applied Mathematics 4: 349360.CrossRefGoogle Scholar
Lal, D. and Peters, B. 1967 Cosmic ray produced radioactivity on the Earth. In Flügge, S., ed., Handbuch der Physik 46(2): 551.Google Scholar
Lingenfelter, R. E. 1969 Pulsars and local cosmic ray prehistory. Nature 224: 11821186.CrossRefGoogle Scholar
McElhinny, M. W. and Senanayake, W. E. 1982 Variations in the Geomagnetic dipole I: The past 50,000 years. Journal of Geomagnetism and Geoelectricity 34: 3951.CrossRefGoogle Scholar
Parker, E. N. 1963 Interplanetary Dynamical Processes . New York and London, Wiley Interscience.Google Scholar
Peters, B. 1957 Über die Anwendbarkeit der Be10-Methode zur Messung kosmischer Strahungsintensität und der Abslagerungsgeschwindigkeit von Tiefseesedimenten vor einiger Millionen Jahren. Zeitschrift für Physik 148: 93.CrossRefGoogle Scholar
Raisbeck, G. M. and Yiou, F. 1991 10Be profiles as a stratigraphic tool. Abstract. Radiocarbon 33(2): 235.Google Scholar
Raisbeck, G. M., Yiou, F., Bourles, D. Lorius, C., Jouzet, J. and Barkov, N. I. 1987 Evidence for two intervals of enhanced 10Be deposition in Antarctic ice during the last glacial period. Nature 326: 273277.CrossRefGoogle Scholar
Raisbeck, G. M., Yiou, F., Fruneau, J. M., Loiseaux, M., Lieuvin, J. C., Ravel, J. M. and Lorius, C. 1981 10Be/7Be as a probe of atmospheric transport processes. Geophysical Research Letters 8: 10151018.CrossRefGoogle Scholar
Sedov, L. I. 1959 Similarity and Dimensional Methods in Mechanics . London and New York, Academic Press.Google Scholar
Simon, M. and Axford, W. I. 1966 Shock waves in the interplanetary medium. Planetary and Space Science 14: 901908.CrossRefGoogle Scholar
Sonett, C. P. 1991 Long period solar-terrestrial variability. Quadrennial US IUGG report, 1987–1990. Reviews of Geophysics 909914.Google Scholar
Sonett, C. P. and Colburn, D. S. 1965 The SI+-SI pair and interplanetary forward-reverse shock ensembles. Planetary and Space Sciences 13: 675692.CrossRefGoogle Scholar
Sonett, C. P., Morfill, G. E. and Jokipii, J. R. 1987 Interstellar shock waves and 10Be from ice cores. Nature 330: 458460.CrossRefGoogle Scholar
Sturrock, P. and Spreiter, J. R. 1965 Shock waves in the solar wind and geomagnetic storms. Journal of Geophysical Research 70: 53455351.CrossRefGoogle Scholar
Taylor, G. I. 1946 The air wave surrounding an expanding sphere. Proceedings of the Royal Society of London A 186: 273292.Google ScholarPubMed
Tric, E., Valet, J.-P., Tucholka, P., Labeyrie, L., Guichard, F., Tauxe, L. and Fontugne, M. 1992 Paleointensity of the geomagnetic field during the last 80,000 years. Journal of Geophysical Research 97: 93379352.CrossRefGoogle Scholar
Vogel, J. C. 1983 14C variations during the upper Pleistocene. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 11th International 14C Conference. Radiocarbon 25(2): 213218.CrossRefGoogle Scholar