Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-10T23:49:11.580Z Has data issue: false hasContentIssue false

Status Report on Sample Preparation Protocols Developed at the LMC14 Laboratory, Saclay, France: From Sample Collection to 14C AMS Measurement

Published online by Cambridge University Press:  17 May 2017

J-P Dumoulin*
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
C Comby-Zerbino
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
E Delqué-Količ
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
C Moreau
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
I Caffy
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
S Hain
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
M Perron
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
B Thellier
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
V Setti
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
B Berthier
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
L Beck
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
*
*Corresponding author. Email: [email protected].

Abstract

The main objective of this report is to present the dating process routinely applied to different types of samples at the Laboratoire de Mesure du Carbone 14 (LMC14). All the results and protocols refer to our procedures over the last 5 years. A description of the sorting and chemical pretreatments of the samples as well as the extraction and graphitization of CO2 are reported. Our last study concerning the degradation of the blank level according to the storage time of the targets between graphitization and accelerator mass spectrometry (AMS) measurement is also presented. This article also provides information on how to submit a valid laboratory sample. We give details relating to sampling procedures on site as well as contamination issues relative to the 14C dating methodology.

Type
Chemical Pretreatment Approaches
Copyright
© 2017 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 2015 Radiocarbon Conference, Dakar, Senegal, 16–20 November 2015

References

REFERENCES

Bard, E, Arnold, M, Toggweiler, J-R, Maurice, P, Duplessy, J-C. 1989. Bomb 14C in the Indian Ocean measured by accelerator mass spectrometry: oceanographic implications. Radiocarbon 31(3):510522.CrossRefGoogle Scholar
Brock, F, Higham, T, Ditchfield, P, Bronk Ramsey, C. 2010. Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon 52(1):102112.CrossRefGoogle Scholar
Cottereau, E, Arnold, M, Moreau, C, Baqué, D, Bavay, D, Caffy, I, Comby, C, Dumoulin, J-P, Hain, S, Perron, M, Salomon, J, Setti, V. 2007. Artemis, the new 14C AMS at LMC14 in Saclay, France. Radiocarbon 49(2):291299.CrossRefGoogle Scholar
Coularis, C, Tisnérat-Laborde, N, Pastor, L, Siclet, F, Fontugne, M. 2016. Temporal and spatial variations of freshwater reservoir ages in the Loire River watershed. Radiocarbon 58(3):549563.CrossRefGoogle Scholar
Delqué-Količ, E, Caffy, I, Comby-Zerbino, C, Dumoulin, J-P, Hain, S, Massault, M, Moreau, C, Quiles, A, Setti, V, Souprayen, C, Tannau, J-F, Thellier, B, Vincent, J. 2013a. Advances in handling small radiocarbon samples at the Laboratoire de Mesure du Carbone 14 in Saclay, France. Radiocarbon 55(2–3):648656.CrossRefGoogle Scholar
Delqué-Količ, E, Comby-Zerbino, C, Ferkane, S, Moreau, C, Dumoulin, J-P, Caffy, I, Souprayen, C, Quilès, A, Bavay, D, Hain, S, Setti, V. 2013b. Preparing and measuring ultra-small radiocarbon samples with the ARTEMIS AMS facility in Saclay, France. Nuclear Instruments and Methods in Physics Research B 294:189193.CrossRefGoogle Scholar
Dumoulin, JP, Caffy, I, Comby-Zerbino, C, Delqué-Količ, E, Hain, S, Massault, M, Moreau, C, Quiles, A, Setti, V, Souprayen, C, Tannau, J-F, Thellier, B, Vincent, J. 2013. Development of a line for dissolved inorganic carbon extraction at LMC14 Artemis Laboratory in Saclay, France. Radiocarbon 55(2–3):10431049.CrossRefGoogle Scholar
Dumoulin, J-P, Messager, C, Valladas, H, Beck, L, Caffy, I, Delqué-Količ, E, Moreau, M, Lebon, M. First investigations to compare two bone preparation methods for radiocarbon dating: Longin and Ninhydrin. Radiocarbon, forthcoming.Google Scholar
Fontugne, M. 2013. New radiocarbon ages of Luzia woman, Lapa Vermelha IV site, Lagoa Santa, Minas Gerais, Brazil. Brazil. Radiocarbon 55(2–3):11871190.CrossRefGoogle Scholar
Fontugne, M, Shao, Q, Frank, N, Thil, F, Guidon, N, Boëda, E. 2013. Cross-dating (Th/U-14C) of calcite covering prehistoric paintings at Serra da Capivara National Park, Piaui, Brazil. Radiocarbon 55(2–3):11911198.CrossRefGoogle Scholar
Genty, D, Konik, S, Valladas, H, Blamart, D, Hellstrom, J, Touma, M, Moreau, C, Dumoulin, J-P, Nouet, J, Dauphin, Y, Weil, R. 2011. Dating the Lascaux Cave gour formation. Radiocarbon 53(3):479500.CrossRefGoogle Scholar
Gillespie, R. 1984. Radiocarbon User’s Handbook, Monograph 3. Oxford: Oxford University Committee for Archeology.Google Scholar
Goh, KM, Molloy, BPJ. 1972. Reliability of radiocarbon dates from buried charcoals. Proceedings of the 8th International Conference on Radiocarbon Dating. Volume 2. Wellington: The Royal Society of New Zealand.Google Scholar
Hatté, C, Morvan, J, Noury, C, Paterne, M. 2001. Is classical acid-alkali-acid treatment responsible for contamination? An alternative proposition. Radiocarbon 43(2A):177182.CrossRefGoogle Scholar
Hatté, C, Poupeau, J-J, Tannau, J-F, Paterne, M. 2003. Development of an automated system for preparation of organic samples. Radiocarbon 45(3):421430.CrossRefGoogle Scholar
Hatté, C, Gauthier, C, Rousseau, D-D, Antoine, P, Fuchs, M, Lagroix, F, Markovic, S-B, Moine, O, Sima, A. 2013. Excursions to C4 vegetation recorded in the Upper Pleistocene loess of Surduk (Northern Serbia): an organic isotope geochemistry study. Climate of the Past 9:10011014.CrossRefGoogle Scholar
Hüls, CM, Grootes, PM, Nadeau, M-J, Bruhn, F, Hasselberg, P, Erlenkeuser, H.. 2004. AMS radiocarbon dating of iron artefacts. Nuclear Instruments and Methods in Physical Research B 223–224:709715.CrossRefGoogle Scholar
Leboucher, V, Jean-Baptiste, P, Fourré, E, Arnold, M, Fieux, M. 2004. Oceanic radiocarbon and tritium on a transect between Australia and Bali (eastern Indian Ocean). Radiocarbon 46(2):567581.CrossRefGoogle Scholar
Leroy, S, L’Héritier, M, Delqué-Kolic, E, Dumoulin, J-P, Moreau, C, Dillmann, P.. 2015. Consolidation or initial design? Radiocarbon dating of ancient iron alloys sheds light on the reinforcements of French Gothic cathedrals. Journal of Archaeological Science 53:190201.CrossRefGoogle Scholar
Longin, R. 1971. New method of collagen extraction for radiocarbon dating. Nature 230(5291):241242.CrossRefGoogle ScholarPubMed
Mook, WG, van der Plicht, J. 1999. Reporting 14C activities and concentrations. Radiocarbon 41(3):227239.CrossRefGoogle Scholar
Moreau, C, Caffy, I, Comby, C, Delqué-Količ, E, Dumoulin, J-P, Hain, S, Quiles, A, Setti, V, Souprayen, C, Thellier, B. 2013. Research and development of the Artemis 14C AMS Facility: status report. Radiocarbon 55(2–3):331337.CrossRefGoogle Scholar
Nelson, DE. 1991. A new method for carbon isotopic analysis of protein. Science 251(4993):552554.CrossRefGoogle ScholarPubMed
Quiles, A, Aubourg, E, Berthier, B, Delque-Količ, E, Pierrat-Bonnefois, G, Dee, MW, Andreu-Lanoë, G, Bronk Ramsey, C, Moreau, C. 2013. Bayesian modelling of an absolute chronology for Egypt’s 18th Dynasty by astrophysical and radiocarbon methods. Journal of Archaeological Science 40(1):423432.CrossRefGoogle Scholar
Richardin, P, Coudert, M, Gandolfo, N, Vincent, J. 2013. Radiocarbon dating of mummified human remains: application to a series of Coptic mummies for the Louvre Museum. Radiocarbon 55(2–3):345352.CrossRefGoogle Scholar
Sacco, A, Thacker, P, Chang, TN, Chiang, TS. 2004. The initiation and growth of filamentous carbon from alpha-iron in H2, CH4, H2O, CO2 and CO gas mixtures. Journal of Catalysis 85:224236.CrossRefGoogle Scholar
Santos, GM, Southon, JR, Griffin, S, Beaupre, SR, Druffel, ERM. 2007. Ultra small-mass AMS 14C sample preparation and analyses at KCCAMS/UCI Facility. Nuclear Instruments and Methods in Physics Research B 259(1):293302.CrossRefGoogle Scholar
Scott, EM. 2003. The fourth international radiocarbon intercomparison (FIRI). Section 10: summary and conclusions. Radiocarbon 45(2):285290.Google Scholar
Scott, EM, Cook, G, Naysmith, P. 2017. Should archaeologists care about 14C intercomparisons? Why? A summary report on SIRI. Radiocarbon, forthcoming.CrossRefGoogle Scholar
Tisnérat-Laborde, N, Poupeau, J-J, Tannau, J-F, Paterne, M. 2001. Development of a semi-automated system for routine preparation of carbonate samples. Radiocarbon 43(2A):299304.CrossRefGoogle Scholar
Tisnérat-Laborde, N, Valladas, H, Kaltnecker, E, Arnold, M. 2003. AMS radiocarbon dating of bones at LSCE. Radiocarbon 45(3):409419.CrossRefGoogle Scholar
Tisnérat-Laborde, N, Montagna, P, Frank, N, Siani, G, Silenzi, S, Paterne, M. 2013. A high-resolution coral-based delta 14C record of surface water processes in the western Mediterranean Sea. Radiocarbon 55(2–3):16171630.CrossRefGoogle Scholar
Valladas, H, Genty, D, Kaltnecker, E, Quiles, A, Tisnérat-Laborde, N, Arnold, M, Delqué-Količ, E, Moreau, C, Baffier, D, Cleyet Merle, J-J, Clottes, J, Girard, M, Monney, J, Montes, R, Sainz, C, Sanchidrian, JL, Simonnet, R. 2013. Dating French and Spanish prehistoric decorated caves in their archaeological contexts. Radiocarbon 55(2–3):14221431.CrossRefGoogle Scholar
Vogel, JS, Southon, JR, Nelson, DE, Brown, TA. 1984. Performance of catalytically condensed carbon for use in accelerator mass spectrometry. Nuclear Instruments and Methods in Physics Research B 5(2):289293.CrossRefGoogle Scholar
Zazzo, A, Lebon, M, Chiotti, L, Comby, C, Delqué-Količ, E, Nespoulet, R, Reiche, I. 2013. Can we use calcined bones for radiocarbon Dating the Paleolithic? Radiocarbon 55(2–3):14091421.CrossRefGoogle Scholar