Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-08T22:45:30.790Z Has data issue: false hasContentIssue false

SPATIAL DISTRIBUTION OF FOSSIL FUEL CO2 IN MEGACITY DELHI DETERMINED USING RADIOCARBON MEASUREMENTS IN PEEPAL (FICUS RELIGIOSA) TREE LEAVES

Published online by Cambridge University Press:  29 August 2023

Rajveer Sharma*
Affiliation:
Inter University Accelerator Centre, New Delhi 110067, India Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
Ravi Kumar Kunchala*
Affiliation:
Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
Sunil Ojha
Affiliation:
Inter University Accelerator Centre, New Delhi 110067, India
Pankaj Kumar
Affiliation:
Inter University Accelerator Centre, New Delhi 110067, India
Deeksha Khandelwal
Affiliation:
Inter University Accelerator Centre, New Delhi 110067, India
Satinath Gargari
Affiliation:
Inter University Accelerator Centre, New Delhi 110067, India
Sundeep Chopra
Affiliation:
Inter University Accelerator Centre, New Delhi 110067, India
*
*Corresponding authors. Emails: [email protected]; [email protected]
*Corresponding authors. Emails: [email protected]; [email protected]

Abstract

The quantification of fossil-fuel derived carbon dioxide (CO2ff) emissions is critical for regional carbon budgets. Radiocarbon (14C) is an effective tool to estimate the contribution of CO2ff to the total atmospheric CO2. In the present study, we have determined the spatial distribution of fossil fuel derived CO2 across Delhi using 14C measurements in Peepal tree leaves from April 2016 to March 2017 at city scale. Our analysis results show that the Δ14C values vary between –67.78‰ to 5.61‰ and corresponding CO2ff values are varying from 1.63 ppm to 33.34 ppm. CO2ff values from campus sites vary between 6.99 ppm to 16.38 ppm with an average value of 10.22 ± 3.20 ppm, while CO2ff values vary from 2.41 ppm to 33.34 ppm with an average value of 13.32 ± 9.40 ppm for sites located in the parks. Further, we observed the higher contributions of fossil fuels in the CO2 from northwest Delhi, central Delhi, and some parts of east and southwest Delhi. In the absence of real-time CO2 monitoring, the results of this study provide a potential method for analyzing the contribution of CO2ff values over the urban landscape to total CO2 over the study region.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahmad, S, Baiocchi, G, Creutzig, F. 2015. CO2 emissions from direct energy use of urban households in India. Environ. Sci. Technol. 49:1131211320.Google Scholar
Andres, RJ, Boden, TA, Bréon, FM, Ciais, P, Davis, S, Erickson, D, Gregg, JS, Jacobson, A, Marland, G, Miller, J, Oda, T, Olivier, JGJ, Raupach, MR, Rayner, P, Treanton, K. 2012. A synthesis of carbon dioxide emissions from fossil-fuel combustion, Biogeosciences 9:18451871.Google Scholar
Boden, TA, Marland, G, and Andres, RJ. 2010. Global, regional, and national fossil-fuel CO2 emissions. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., U.S.A. doi: 10.3334/CDIAC/00001_V2010 CrossRefGoogle Scholar
Bozhinova, D, Palstra, S, Van der Molen, M, Krol, M, Meijer, H, Peters, W. 2016. Three years of Δ14CO2 observations from maize leaves in the Netherlands and Western Europe. Radiocarbon 58(3):459478 Google Scholar
Census. 2011. http://census2011.co.in [Indian census].Google Scholar
Chandra, N, Lal, S, Venkataramani, S, Patra, PK, Sheel, V. 2016. Temporal variations of atmospheric CO2 and CO at Ahmedabad in western India. Atmos. Chem. Phys. 16:61536173.Google Scholar
Ciais, P, Sabine, C, Bala, G, Bopp, L, Brovkin, V, Canadell, J, et al. 2013. Carbon and other biogeochem. In: Stocker, TF, Qin, D, Plattner, G-K, et al., editors. Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge (UK) and New York: Cambridge University Press.Google Scholar
Delhi Economic Survey. 2021–2022. http://delhiplanning.nic.in/content/economic-survey-delhi-2021-22 [last accessed on 08/07/2022].Google Scholar
Duren, RM, Miller, CE. 2012. Measuring the carbon emissions of megacities. Nature Clim. Change 2:560562.Google Scholar
Friedlingstein, P, O’Sullivan, M, Jones, MW, Andrew, RM, Hauck, J, Olsen, et al. 2020. Global carbon budget 2020. Earth Syst. Sci. Data 12:32693340.Google Scholar
Hua, Q, Turnbull, JC, Santos, GM, Rakowski, AZ, Ancapichún, S, De Pol-Holz, R, Hammer, S, Lehman, SJ, Levin, I, Miller, JB, Palmer, JG, Turney, CSM. 2022. Atmospheric radiocarbon for the period 1950–2019. Radiocarbon 64(4):723745.Google Scholar
Hsueh, DY, Krakauer, NY, Randerson, JT, Xu, XM, Trumbore, SE, Southon, JR. 2007. Regional patterns of radiocarbon and fossil fuel-derived CO2 in surface air across North America, Geophys. Res. Lett. 34:L02816.CrossRefGoogle Scholar
Indian State of Forest Report (ISFR). 2019. Volume 2. Published by Forest Survey of India (Ministry of Environment Forest and Climate Change). Dehradun, Uttarakhand, India https://fsi.nic.in/isfr19/vol2/isfr-2019-vol-ii-delhi.pdf [last accessed on 25/08/2021].Google Scholar
IPCC. 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri RK, Meyer LA, editors]. Geneva, Switzerland: IPCC. 151 p.Google Scholar
Jain, CD, Singh, V, Akhil Raj, ST, Madhavan, BL, Ratnam, MV. 2021. Local emission and long-range transport impacts on the CO, CO2, and CH4 concentrations at a tropical rural site. Atm. Env. 254:11839 Google Scholar
Kumar, P, Gulia, S, Harrison, RM, Khare, M. 2017. The influence of odd–even car trial on fine and coarse particles in Delhi. Environ. Pollut. 225:2030.Google Scholar
Lal, S, Chandra, N, Venkataramani, S. 2015. A study of CO2 and related trace gases using a laser-based technique at an urban site in western India. Current Science 109(11):21112116.Google Scholar
Levin, I, Kromer, B, Schmidt, M, Sartorius, H. 2003. A novel approach for independent budgeting of fossil fuel CO2 over Europe by 14CO2 observations. Geo-phys. Res. Lett. 30:2194.Google Scholar
Le Quéré, C, Andrew, RM, Friedlingstein, P, Sitch, S, Hauck, J, Pongratz, J, Pickers, PA, et al. 2018. Global Carbon Budget 2018. Earth Syst. Sci. Data 10:21412194. doi: 10.5194/essd-10-2141-2018 CrossRefGoogle Scholar
Lichtfouse, E, Lichtfouse, M, Kashgarian, M, Bol, R. 2005. 14C of grasses as an indicator of fossil fuel CO2 pollution. Environ Chem Lett. 3:7881.Google Scholar
Lin, X, Indira, NK, Ramonet, M, Delmotte, M, Ciais, P, Bhatt, BC, et al. 2015. Long-lived atmospheric trace gases measurements in flask samples from three stations in India, Atmos. Chem. Phys. 15:98199849.Google Scholar
Marland, G, Boden, TA, Andres, RJ. 2003. Global, regional, and national CO2 emissions. Trends: a compendium of data on global change. Oak Ridge (TN): Oak Ridge National Laboratory, U.S. Department of Energy. p. 3443.Google Scholar
Mahato, S, Pal, S, Ghosh, KG. 2020. Effect of lockdown amid COVID-19 pandemic on air quality of the megacity Delhi, India. Science of the Total Environment 730:139086.Google Scholar
Masood, A, Ahmad, K. 2023. Data-driven predictive modeling of PM2.5 concentrations using machine learning and deep learning techniques: a case study of Delhi, India. Environ Monit Assess 195:60.Google Scholar
Metya, A, Datye, A, Chakraborty, S, Tiwari, YK, Sarma, D, Bora, A, Gogoi, N. 2021. Diurnal and seasonal variability of CO2 and CH4 concentration in a semi-urban environment of western India. Sci Rep. 11:2931.Google Scholar
Niu, Z, Zhou, W, Wu, S, Cheng, P, Lu, X, Xiong, X, Du, H, Fu, Y, Wang, G. 2016a. Atmospheric fossil fuel CO2 traced by Δ14C in Beijing and Xiamen, China: temporal variations, inland/coastal differences and influencing factors. Environ. Sci. Technol. 50:54745480 Google Scholar
Niu, Z, Zhou, W, Zhang, X, Wang, S, Zhang, D, Lu, X, Cheng, P, Wu, S, Xiong, X, Du, H, Fu, Y. 2016b. The spatial distribution of fossil fuel CO2 traced by Δ14C in the leaves of gingko (Ginkgo biloba L.) in Beijing City, China. Environ. Sci. Pollut. Res. 23(1):556562.Google Scholar
Nomura, S, Naja, M, Ahmed, MK, Mukai, H, Terao, Y, Machida, T, Sasakawa, M, Patra, PK. 2021. Measurement report: Regional characteristics of seasonal and long-term variations in greenhouse gases at Nainital, India, and Comilla, Bangladesh, Atmos. Chem. Phys. 21:1642716452.Google Scholar
Park, JH, Hong, W, Park, G, Sung, KS, Lee, KH, Kim, YE, Kim, JK, Choi, HW, Kim, GD, Woo, HJ. 2013. Distributions of fossil fuel originated CO2 in five metropolitan areas of Korea (Seoul, Busan, Daegu, Daejeon, and Gwangju) according to the Δ14C in ginkgo leaves. Nuclear Instruments and Methods in Physics ResearchB 294:508514.Google Scholar
Riley, WJ, Hsueh, DY, Randerson, JT, Fischer, ML, Hatch, JG, Pataki, DE, Wang, W, Goulden, ML. 2008. Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model. J. Geophys. Res. 113:G04002.Google Scholar
Santos, GM, Oliveira, FM, Park, J, Sena, ACT, Chiquetto, JB, Macario, KD, Grainger, CSG. 2019. Assessment of the regional fossil fuel CO2 distribution through Δ14C patterns in ipê leaves: the case of Rio de Janeiro state, Brazil. City and Environment Interactions 1:100001.Google Scholar
Seto, KC, Dhakal, S, Bigio, A, Blanco, H, Delgado, GC, Dewar, D, et al. 2014. Human settlements, infrastructure and spatial planning. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge (UK) and New York: Cambridge University Press.Google Scholar
Sharma, N, Dadhwal, VK, Kant, Y, Mahesh, P, Mallikarjun, K, Gadavi, H, Sharma, A, Ali, MM. 2014. Atmospheric CO2 variations in two contrasting environmental sites over India. Air, Soil and Water Research 7:6168.Google Scholar
Sharma, R, Kunchala, R K, Ojha, S, Kumar, P, Gargari, S, Chopra, S. 2023. Spaial distribution of fossil fuel CO2 across India using radiocarbon measurements in crop plants. Journal of Environmental Sciences 124:1930.Google Scholar
Sharma, R, Umapathy, GR, Kumar, P, Ojha, S, Gargari, S, Joshi, R, Chopra, S, Kanjilal, D. 2019. AMS and upcoming geochronology facility at Inter University Accelerator Centre (IUAC), New Delhi, India. Nuclear Instruments and Methods in Physics Research B 438:124130.Google Scholar
Sreenivas, G, Mahesh, P, Subin, J, Kanchana, AL, Rao, PVN, Dadhwal, VK. 2016. Influence of meteorology and interrelationship with greenhouse gases (CO2 and CH4) at a suburban site of India. Atmos. Chem. Phys. 16:39533967.Google Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19:355363.Google Scholar
Tiwari, YK, Revadekar, JV, Ravi, KK. 2013. Variations in atmospheric carbon dioxide and its association with rainfall and vegetation over India. Atmospheric Environment 68:4551.Google Scholar
Tiwari, YK, Vellore, RK, Ravi, KK, van der Schoot, M, Cho, CH. 2014. Influence of monsoons on atmospheric CO2 spatial variability and ground-based monitoring over India. Sci. Total Environ. 490:570578.Google Scholar
Turnbull, JC, Miller, JB, Lehman, SJ, Tans, PP, Sparks, RJ, Southon, J. 2006. Comparison of 14CO2, CO, and SF6 as tracers for recently added fossil fuel CO2 in the atmosphere and implications for biological CO2 exchange. Geophys. Res. Lett. 33:L01817.Google Scholar
Turnbull, J, Rayner, P, Miller, J, Naegler, T, Ciais, P, Cozic, A. 2009. On the use of 14CO2 as a tracer for fossil fuel CO2: Quantifying uncertainties using an atmospheric transport model. J. Geophys. Res.-Atmos. 114:D22302.Google Scholar
Turnbull, JC, Graven, H, Krakauer, NY. 2016. Radiocarbon in the atmosphere. In: Schuur, E, Druffel, E, Trumbore, S, editors. Radiocarbon and climate change. Springer. p. 83137.Google Scholar
Turnbull, JC, Mikaloff Fletcher, SE, Ansell, I, Brailsford, GW, Moss, RC, Norris, MW, Steinkamp, K. 2017. Sixty years of radiocarbon dioxide measurements at Wellington, New Zealand: 1954–2014. Atmos. Chem. Phys. 17:1477114784.Google Scholar
UN. 2014. United Nations Department of Economic and Social Affairs, Population Division. World Urbanization Prospects. The 2014 Revision, Highlights (ST/ESA/SER.A/352). New York: United Nations.Google Scholar
UN. 2018. United Nations Department of Economic Social Affairs, Population Division. World Urbanization Prospects. The 2018 Revision; online edition. New York: United Nations.Google Scholar
Varga, T, Barnucz, P, Major, I, Lisztes-Szabó, Z, Jull, AJT, László, E, Pénzes, J, Molnár, M. 2019. Fossil carbon load in urban vegetation for Debrecen, Hungary. Radiocarbon 61(5):11991210.Google Scholar
Varga, T, Jull, A, Lisztes-Szabó, Z, Molnár, M. 2020a. Spatial distribution of 14C in tree leaves from Bali, Indonesia. Radiocarbon 62(1):235242.Google Scholar
Varga, T, Orsovszki, G, Major, I, Veres, M, Bujtás, T, Végh, G, Manga, L, Jull, AJT, Palcsu, L, Molnár, M. 2020b. Advanced atmospheric 14C monitoring around the Paks Nuclear Power Plant, Hungary. J. Environ. Radioact. 213:106138.Google Scholar
Varga, T, Major, I, Gergely, V, Lencsés, A, Bujtás, T, Jull, AJT, Veres, M, Molnár, M. 2021. Radiocarbon in the atmospheric gases and PM10 aerosol around the Paks Nuclear Power Plant, Hungary. J. Environ. Radioact. 237:106670.Google Scholar
Vay, SA, Tyler, SC, Choi, Y, Blake, DR, Blake, NJ, Sachse, GW, Diskin, GS, Singh, HB. 2009. Sources and transport of Δ14C in CO2 within the Mexico City Basin and vicinity. Atmos. Chem. Phys. 9:49734985.Google Scholar
Wenger, A, Pugsley, K, O’Doherty, S, Rigby, M, Manning, AJ, Lunt, MF, White, ED. 2019. Atmospheric radiocarbon measurements to quantify CO2 emissions in the UK from 2014 to 2015, Atmos. Chem. Phys. 19:1405714070 Google Scholar
Wang, W, Pataki, DE. 2010. Spatial patterns of plant isotope tracers in the Los Angeles urban region. Landscape Ecol 25: 3552.Google Scholar
Wang, P, Zhou, W, Niu, Z, Xiong, X, Wu, S, Cheng, P, Hou, Y, Lu, X, Du, H. 2021. Spatio-temporal variability of atmospheric CO2 and its main causes: a case study in Xi’an city, China. Atmospheric Research 249:105346.Google Scholar
WHO. 2016. WHO Global Urban Ambient Air Pollution Database (Update 2016).Google Scholar
WMO. 2022: WMO Greenhouse Gas Bulletin. [Available online from https://library.wmo.int/doc_num.php?explnum_id=11352, last accessed on 21/03/2023].Google Scholar
Zhou, W, Niu, Z, Wu, S, Xiong, X, Hou, Y, Wang, P, Feng, T, Cheng, P, Du, H, Lu, X, An, Z, Burr, GS, Zhu, Y. 2020. Fossil fuel CO2 traced by radiocarbon in fifteen Chinese cities. Sci. Total Environ. 729:138639.Google Scholar
Zhou, W, Wu, S, Huo, W, Xiong, X, Cheng, P, Lu, X, Niu, Z, 2014. Tracing fossil fuel CO2 using Δ14C inXi’an City, China. Atmos. Environ. 94:538545.Google Scholar