Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-18T19:43:48.582Z Has data issue: false hasContentIssue false

Spatial and Temporal Dependence of the 13C and 14C Isotopes of Wine Ethanols

Published online by Cambridge University Press:  18 July 2016

Gérard J. Martin
Affiliation:
Laboratoire de RMN-RC, URA-CNRS 472, Université de Nantes, 2 rue de la Houssinière, F-44072 Nantes cedex 03, France
Jean-Noël Thibault
Affiliation:
Laboratoire de RMN-RC, URA-CNRS 472, Université de Nantes, 2 rue de la Houssinière, F-44072 Nantes cedex 03, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

More than 1000 authentic samples of ethanols were extracted by quantitative distillation from vintage wines and brandies prepared from grapes harvested in well-defined regions and years. The 13C contents of these ethanols were determined by isotope ratio mass spectrometry (IRMS) and the 14C activity of most of these samples was determined by liquid scintillation counting (LSC). We show that the 13C content of a C3 plant such as grape vine, which strongly depends on water availability, spans nearly a 10% range worldwide. The efficiency of the 14C content of grape ethanols as a tracer of the CO2 turnover after the peak of the nuclear test in the 1960s is also discussed in terms of geographical effects. Finally, the necessity of a multi-isotopic approach, including 13C and 14C isotopes, for detecting sophisticated adulterations is illustrated in the case of wines and brandies.

Type
Articles
Copyright
Copyright © The American Journal of Science 

References

Baxter, M. S. and Walton, A. 1971 Carbon-14 concentrations in recent wines and spirits. Journal of Food Science 36: 540541.Google Scholar
Burchuladze, A. A., Chudy, M., Eristavi, I. V., Pagava, I. V., Povinec, P., Sivo, A. and Togonidze, G. I. 1989 Anthropogenic 14C variations in atmospheric CO2 and wines. In Long, A., Kra, R. S. and Srdoč, D., eds., Proceedings of the 13th International 14C Conference. Radiocarbon 31(3): 771776.Google Scholar
Craig, H. 1957 Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochimica et Cosmochimica Acta 12: 133149.Google Scholar
Day, M., Zhang, B. L., Martin, G. J., Asselin, C. and Morlat, R., 1995 Essai de caractérisation du millésime et de la zone de production des vins à l'aide de traceurs métalliques et isotopiques. Journal International des Sciences de la Vigne et du Vin 29: 7587.Google Scholar
Dingkuhn, M., Farquhar, G. D., De Datta, S. K. and O'Toole, J. C. 1991 Discrimination of 13C among upland rices having different water use efficiencies. Australian Journal of Agricultural Research 42: 11231131.Google Scholar
Fischer, E., Muller, H., Rapp, A. and Steffan, H., 1980 Tritium- und Kohlenstoff-14-Gehalte von Weinen verschiedener Jahrgänge der nördlichen und südlichen Hemisphäre. Zeitschrift für Lebensmittel Untersuchung und -Forschung 171(4): 269271.Google Scholar
Guerain, J. and Tourliere, S. 1975 Radioactivité carbone et tritium des alcools. Industries Alimentaires et Agricoles: 811822.Google Scholar
Hanekom, A. N., De Villiers, J. F. and Houtman, A. C. 1978 The influence of acetaldehyde and water on the determination of C-14 in wine alcohol. Vitis 17: 168169.Google Scholar
Hanekom, A. N., Du Plessis, C. S., De Villiers, J. F. and Houtmann, A. C. 1978 The C-14 content of the ethanol of South African wines for the years 1925–1975. Vitis 17: 170172.Google Scholar
Levin, I., Munnick, K. O. and Weiss, W. 1980 The effect of anthropogenic CO2 and 14C sources on the distribution of 14C in the atmosphere. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 10th International 14C Conference. Radiocarbon 22(2): 379391.Google Scholar
Lopes Sousa, J., Pinto, R. E. and Almendra, M. E. 1975 Variaçao do teor em 14C de 1950 a 1974 em vinhos do douro. Agronomia Lusitania 36: 223234.Google Scholar
Marques Gomes, J. V., Perrera, J. and De Almeida Saavedra, F. 1981 Teneur en 14C des vins de consommation de la région du Douro avant et après les explosions nucléaires. Office Internationale de la Vigne et du Vin: FV 740.Google Scholar
Martin, G. J. and Martin, G. G. 1995 NMR and MS Stable Isotope Studies of Fruit Juice Adulteration. In Nagy, S. and Wade, R., eds., Modern Methods to Detect Fruit Beverage Adulteration 1. Auburndale, AGS Science Inc.: 127.Google Scholar
Martin, G. J. and Martin, M. L. 1988 The site-specific natural isotope fractionation-NMR method applied to the study of wines. Modern Methods of Plant Analysis 6: 258275.Google Scholar
Martin, G. E., Noakes, J. E., Alfonso, F. C. and Figert, D. M. 1981 Liquid scintillation counting of 14C for differentiation of synthetic ethanol from ethanol of fermentation. Journal of the Association Official of Analytical Chemists 64: 1142-1144.Google Scholar
McWeeny, D. and Bates, M. 1980 Discrimination between synthetic and natural ethyl alcohol in spirits and fortified wines. Journal of Food Technology 15: 407412.Google Scholar
Moussa, I., Naulet, N., Martin, M. L. and Martin, G. J. 1990 A site-specific and multielement approach to the determination liquid-vapor isotope fractionation parameters. The case of alcohols. Journal of Physical Chemistry 94: 83038309.Google Scholar
Nydal, R. and Lövseth, K. 1983 Tracing bomb C-14 in the atmosphere 1962–1980. Journal of Geophysical Research 88: 36213642.Google Scholar
O'Leary, M. 1988 Carbon Isotopes in Photosynthesis. Bioscience 38: 328336.Google Scholar
Olsson, I. U. 1970 The use of oxalic acid as a standard in Radiocarbon variation and absolute chronology. In Olsson, I. U., ed., Radiocarbon Variations and Absolute Chronology. Proceedings of the 12th Nobel Symposium. Stokholm, Almqvist and Wiksell: 17.Google Scholar
Polach, H. 1989a 14CARE. In Long, A., Kra, R. S. and Srdoč, D., eds., Proceedings of the 13th International 14C Conference. Radiocarbon 31(3): 422428.Google Scholar
Polach, H. 1989b Liquid scintillation C-14 spectrometry: Errors and assurances. In Long, A., Kra, R. S. and Srdoč, D., eds., Proceedings of the 13th International 14C Conference. Radiocarbon 31(3): 327331.Google Scholar
Remaud, G., Guillou, C., Vallet, C. and Martin, G. J. 1992 A coupled NMR and MS isotopic method for the authentication of natural vinegars. Fresenius Journal of Analytical Chemistry 342: 457461.Google Scholar
Schönhofer, F. 1992 14C in Austrian wine and vinegar. In Long, A. and Kra, R. S., eds., Proceedings of the 14th International 14C Conference. Radiocarbon 34(3): 768771.Google Scholar
Simon, H., Rauschenbach, P. and Frey, A. 1968 Unterscheidung von Gärung-alkohol und Essig von synthetischem Material dusch C-14-Gehalt. Zeitschrift für Lebensmiitel-Untersuchung und-Forschung 136: 279284.Google Scholar
Stefani, R. 1974 Utilizzazione della misura della radioattivita del radiocarbonio 14C per determinare l'annata di un vino. Industrie Agrarie 12: 99102.Google Scholar
Stuiver, M. and Polach, H. A. 1977 Discussion: Reporting of 14C data. Radiocarbon 19(3): 355363.Google Scholar
Tamers, M. A. 1965 Routine carbon-14 dating using liquid scintillation techniques. In Radiocarbon and Tritium Dating. Proceedings of the 6th International Conference on Radiocarbon and Tritium Dating. Oak Ridge, U.S. Atomic Energy Commission: 650–652.Google Scholar
Thibault, J. N., Naulet, N. and Martin, G. J. 1994 Experimental methodologies for the determination of radiocarbon in ethanol. Analusis 22: 196201.Google Scholar