Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-19T00:07:05.108Z Has data issue: false hasContentIssue false

Segments of Atmospheric 14C Change as Derived from Late Glacial and Early Holocene Floating Tree-Ring Series

Published online by Cambridge University Press:  18 July 2016

Bernd Kromer
Affiliation:
Heidelberg Academy of Sciences, Institute of Environmental Physics, INF 366, D-69120 Heidelberg, Germany
Marco Spurk
Affiliation:
Institute of Botany, University of Hohenheim 210, D-70593 Stuttgart, Germany
Sabine Remmele
Affiliation:
Institute of Botany, University of Hohenheim 210, D-70593 Stuttgart, Germany
Mike Barbetti
Affiliation:
NWG Macintosh Centre for Quaternary Dating, Madsen Building F09, University of Sydney, NSW 2006, Australia
Vladimiro Joniello
Affiliation:
Via Settembrini 109,1-31015 Conegliano, Italy
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present results of 14C dating of several tree-ring series from the Late Glacial and Early Holocene, analyzed at the Heidelberg University radiocarbon laboratory. Although these are floating series, they contribute high-resolution information about the variability of atmospheric 14C during those periods.

Type
Part 1: Methods
Copyright
Copyright © The American Journal of Science 

References

Barbetti, M., Bird, T., Dolezal, G., Taylor, G., Francey, R. J., Cook, E. and Peterson, M. 1992 Radiocarbon variations from Tasmanian conifers: First results from late Pleistocene and Holocene logs. In Long, A. and Kra, R. S., eds., Proceedings of the 14th International 14C Conference. Radiocarbon 34(3): 806817.Google Scholar
Braziunas, T. F., Fung, I. Y. and Stuiver, M. 1995 The preindustrial atmospheric 14CO2 latitudinal gradient as related to exchanges among atmospheric, oceanic, and terrestrial reservoirs. Global Biogeochemical Cycles 9(4): 565584.Google Scholar
Casadoro, G., Castiglioni, G. B., Corona, E., Massari, F., Moretto, M. G., Paganelli, A., Terenziani, F. and Toniello, V. 1976 Un deposito tardowürmiano con tronchi subfossili alle fornaci di Revine (Treviso). Bollettino del Comitato Glaciologico Italiano 24:22–63.Google Scholar
Corona, E. 1984 Una curva trisecolare per larice del Dryas Antico. Dendrochronologia 2: 8389.Google Scholar
Hajdas, I., Ivy-Ochs, S. D., Bonani, G., Lotter, A. F., Zolitschka, B. and Schlüchter, C. 1995 Radiocarbon age of the Laacher See tephra: 11,230 ± 40 BP. In Cook, G. T., Harkness, D. D., Miller, B. F. and Scott, E. M., eds., Proceedings of the 15th International 14C Conference. Radiocarbon 37(2): 149154.Google Scholar
Sparks, R. J., Melhuish, W. H., McKee, J. W. A., Ogden, J., Palmer, J. G. and Molloy, B. P. J. 1995 14C calibration in the Southern Hemisphere and the date of the last taupo eruption: Evidence from tree-ring sequences. In Cook, G. T., Harkness, D. D., Miller, B. F. and Scott, E. M., eds., Proceedings of the 15th International 14C Conference. Radiocarbon 37(2): 155163.Google Scholar