Published online by Cambridge University Press: 22 May 2017
Due to an increasing number of nuclear reactors in operation, the radiocarbon (14C) released from nuclear power plants (NPPs) has become an important anthropogenic source of 14C. The examination of seasonal Δ14C and monthly Sr/Ca, Mg/Ca variations in a coral in Daya Bay (China) shows that NPPs located there have an impact on the Δ14C level and sea surface temperature (SST). The Mg/Ca variation was in good correlation with the Pacific Decadal Oscillation (PDO) before the operation of Ling’ao NPP in 2002, but this correlation became weak due to an abnormally higher SST after 2002. As illustrated by the Δ14C variation in the coral, there were two relative increases of Δ14C values in 1994 and 2002 when Daya Bay NPP and Ling’ao NPP began operations, respectively. The 14C released from NPPs, instead of oceanic circulation, is probably the primary factor on the Δ14C variation in Daya Bay during the NPPs’ operation. The relative increase in Δ14C value was ~80‰, which equals to ~18 Bq/kgC in specific activity. The seasonal variability in Δ14C value usually peaked in summer, the real reason of which was unknown. This study sheds light on how the NPPs influence the 14C content and SST in surrounding marine environment.
Selected Papers from the 2015 Radiocarbon Conference, Dakar, Senegal, 16–20 November 2015