Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-19T00:49:16.308Z Has data issue: false hasContentIssue false

Reservoir Effect of Coastal Waters Off Western and Northwestern Galicia

Published online by Cambridge University Press:  18 July 2016

António M Monge Soares*
Affiliation:
Dep. de Química, Instituto Tecnológico e Nuclear, Estrada Nacional 10, 2685-953 Sacavém, Portugal
João M Alveirinho Dias
Affiliation:
Faculdade de Ciências do Mar e do Ambiente, Universidade do Algarve, Campus de Gambelas, 8000-117 Faro, Portugal. Email: [email protected]
*
Corresponding author. Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Differences in the radiocarbon ages of closely associated marine mollusk shells and terrestrial material (charred wood or bones) from several Galician archaeological contexts are significant from the Iron Age to Medieval times. δR values show high variability, ranging from −280 ± 70 to 270 ± 40 14C yr. The set of δR values also presents a strong positive peak (δR = 270 ± 40 14C yr) at 860 ± 90 BP, which matches another peak found for western Portuguese coastal waters. The data obtained, namely the negative or close to zero δR values, suggest that the reduced offset between atmospheric and surface water 14C content is due to the existence of a strong stratification of the water column and environmental factors in the Galician rías during the Iron Age and the Medieval period.

Type
Articles
Copyright
Copyright © 2007 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Álvarez, MC, Flores, JA, Sierro, FJ, Diz, P, Francés, G, Pelejero, C, Grimalt, J. 2005. Millennial surface water dynamics in the Ría de Vigo during the last 3000 years as revealed by coccoliths and molecular biomarkers. Palaeogeography, Palaeoclimatology, Palaeoecology 218(1):113.Google Scholar
Álvarez-Salgado, XA, Rosón, G, Pérez, FF, Pazos, Y. 1993. Hydrographic variability off the Rías Baixas (NW Spain) during the upwelling season. Journal of Geophysical Research 98(C8):14,44756.Google Scholar
Álvarez-Salgado, XA, Gago, J, Míguez, BM, Gilcoto, M, Pérez, FF. 2000. Surface waters of the NW Iberian Margin: upwelling on the shelf versus outwelling of upwelled waters from the Rías Baixas. Estuarine, Coastal and Shelf Science 51(6):821–37.Google Scholar
Ascough, PL, Cook, GT, Dugmore, AJ, Barber, J, Higney, E, Scott, EM. 2004. Holocene variations in the Scottish marine radiocarbon reservoir effect. Radiocarbon 46(2):611–20.Google Scholar
Ascough, P, Cook, G, Dugmore, A. 2005. Methodological approaches to determining the marine radiocarbon reservoir effect. Progress in Physical Geography 29(4):532–47.Google Scholar
Bello Diéguez, JM. 2004. Excavaciones bajo el Faro Romano de la Torre de Hércules. URL: http://www.ctv.es/USERS/sananton/torre.pdf. In Spanish.Google Scholar
Bond, G, Showers, W, Cheseby, M, Lotti, R, Almasi, P, deMenocal, P, Priore, P, Cullen, H, Hadjas, I, Bonani, G. 1997. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science 278(5341):1257–66.Google Scholar
Bond, G, Kromer, B, Beer, J, Muscheler, R, Evans, MN, Showers, W, Hoffmann, S, Lotti-Bond, R, Hajdas, I, Bonani, G. 2001. Persistent solar influence on North Atlantic climate during the Holocene. Science 294(5549):2130–6.Google Scholar
Borges, AV, Frankignoulle, M. 2002. Aspects of dissolved inorganic carbon dynamics in the upwelling system off the Galician coast. Journal of Marine Systems 32(1–3):181–98.Google Scholar
Castro, CG, Pérez, FF, Álvarez-Salgado, XA, Fraga, F. 2000. Coupling between the thermohaline, chemical and biological fields during two contrasting upwelling events off the NW Iberian Peninsula. Continental Shelf Research 20(2):189210.Google Scholar
deMenocal, P, Ortiz, J, Guilderson, T, Sarnthein, M. 2000. Coherent high- and low-latitude climate variability during the Holocene Warm Period. Science 288(5474):2198–202.Google Scholar
Diffenbaugh, NS, Sloan, LC, Snyder, MA. 2003. Orbital suppression of wind-driven upwelling in the California Current at 6 ka. Paleoceanography 18(2):1051; doi: 10.1029/2002PA000865.Google Scholar
Diz, P, Francés, G, Pelejero, C, Grimalt, JO, Vilas, F. 2002. The last 3000 years in the Ría de Vigo (NW Iberian Margin): climatic and hydrographic signals. The Holocene 12(4):459–68.Google Scholar
Ferreira, DB. 1984. Le systeme climatique de l'Upwelling Ouest Iberique [Report #19 of the Linha de Acção de Geografia Física]. Lisbon: Centro de Estudos Geográficos. INIC. 92 p. In French.Google Scholar
Fiúza, AFG. 1982. The Portuguese coastal upwelling system. In: Actual Problems of Oceanography in Portugal. Lisbon: Junta Nacional de Investigação Científica e Tecnológica. p 4571.Google Scholar
Fiúza, AFG. 1983. Upwelling patterns off Portugal. In: Suess, E, Thiede, J, editors. Coastal Upwelling. Its Sediment Record. New York: Plenum. p 8598.Google Scholar
Fiúza, AFG, Macedo, ME, Guerreiro, MR. 1982. Climatological space and time variation of the Portuguese coastal upwelling. Oceanologica Acta 5(1):3140.Google Scholar
González-Álvarez, R, Bernárdez, P, Pena, LD, Francés, G, Prego, R, Diz, P, Vilas, F. 2005. Paleoclimatic evolution of the Galician continental shelf (NW of Spain) during the last 3000 years: from a storm regime to present conditions. Journal of Marine Systems 54(1–4):245–60.Google Scholar
Hutter, S, Hauschild, T. 1991. El Faro Romano de la Coruña. A Coruña: Ediciós do Castro. 99 p. In Spanish.Google Scholar
Ingram, BL. 1998. Differences in radiocarbon age between shell and charcoal from a Holocene shellmound in northern California. Quaternary Research 49(1):102–10.Google Scholar
Keith, ML, Anderson, GM. 1963. Radiocarbon dating: fictitious results with mollusk shells. Science 141(3581):634–7.Google Scholar
Kennett, DJ, Ingram, BL, Erlandson, JM, Walker, P. 1997. Evidence for temporal fluctuations in marine radiocarbon reservoir ages in the Santa Barbara Channel, southern California. Journal of Archaeological Science 24(11):1051–9.Google Scholar
Longin, R. 1970. Extraction du collagene des os fossils pour leur datation par la methode du carbone-14 [PhD dissertation]. Lyon: Faculté des Sciences de l'Université de Lyon. 70 p. In French.Google Scholar
Lorenzo, LM, Arbones, B, Tilstone, GH, Figueras, FG. 2005. Across-shelf variability of phytoplankton composition, photosynthetic parameters and primary production in the NW Iberian upwelling system. Journal of Marine Systems 54(1–4):157–73.Google Scholar
McDermott, F, Mattey, DP, Hawkesworth, C. 2001. Centennial-scale Holocene climate variability revealed by a high-resolution speleothem δ18O record from SW Ireland. Science 294(5545):1328–31.Google Scholar
Nogueira, E, González-Nuevo, G, Morán, XAG, Varela, M, Bode, A. 2003. Hydrological structures along the N and NW Iberian shelf during the winter-spring transition. Thalassas 19(2b):65–7.Google Scholar
Prego, R, Bao, R. 1997. Upwelling influence on the Galician coast: silicate in shelf water and underlying surface sediments. Continental Shelf Research 17(3):307–18.Google Scholar
Prego, R, Barciela, MC, Varela, M. 1999. Nutrient dynamics in the Galician coastal area (northwestern Iberian Peninsula): Do the Rías Bajas receive more nutrient salts than the Rías Altas? Continental Shelf Research 19(3):317–34.Google Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Bertrand, CJH, Blackwell, PG, Buck, CE, Burr, GS, Cutler, KB, Damon, PE, Edwards, RL, Fairbanks, RG, Friedrich, M, Guilderson, TP, Hogg, AG, Hughen, KA, Kromer, B, McCormac, G, Manning, S, Bronk Ramsey, C, Reimer, RW, Remmele, S, Southon, JR, Stuiver, M, Talamo, S, Taylor, FW, van der Plicht, J, Weyhenmeyer, CE. 2005. IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46(3):1029–58.Google Scholar
Rubinos Pérez, A, Fábregas Valcarce, R, Alonso Mathias, F, Concheiro Coello, A. 1999. Las fechas C-14 del Castro de O Achadizo (Boiro, A Coruña): problemática de la calibración de conchas marinas. Trabajos de Prehistoria 56(1):147–55. In Spanish.Google Scholar
Soares, AMM. 1989. O Efeito de Reservatório Oceânico nas Águas Costeiras de Portugal Continental. Sacavém: Instituto de Ciências e Engenharia Nucleares (Instituto Nacional de Engenharia e Tecnologia Industrial). 135 p. In Portuguese.Google Scholar
Soares, AMM. 1993. The 14C content of marine shells: evidence for variability in coastal upwelling off Portugal during the Holocene. In: Isotope Techniques in the Study of Past and Current Environmental Changes in the Hydrosphere and the Atmosphere. Vienna: International Atomic Energy Agency (IAEA). p 471–85.Google Scholar
Soares, AMM. 2005. Variabilidade do “Upwelling” Costeiro durante o Holocénico nas Margens Atlânticas Ocidental e Meridional da Peninsula Ibérica [PhD dissertation]. Faro: Faculdade de Ciências do Mar e do Ambiente, Universidade do Algarve. In Portuguese.Google Scholar
Soares, AMM, Cabral, JMP. 1993. Idades aparentes das conchas marinhas provenientes da costa portuguesa e a sua variação ao longo do Holocénico. In: El Cuaternario en España y Portugal. Madrid: Associacion Española para el Estudio del Cuaternario/Grupo de Trabalho Português para o Estudo do Quaternário. Volume 2. p 869–80. In Portuguese.Google Scholar
Soares, AMM, Dias, JMA. 2006. Coastal upwelling and radiocarbon—evidence for temporal fluctuations in ocean reservoir effect off Portugal during the Holocene. Radiocarbon 48(1):4560.Google Scholar
Stuiver, M, Braziunas, TF. 1993. Modeling atmospheric 14C influences and 14C ages of marine samples to 10,000 BC. Radiocarbon 35(1): 137–89.Google Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355–63.Google Scholar
Stuiver, M, Reimer, PJ. 1993. Extended 14C data base and revised CALIB 3.0 14C age calibration. Radiocarbon 35(1):215–30.Google Scholar
Stuiver, M, Pearson, GW, Braziunas, T. 1986. Radiocarbon age calibration of marine samples back to 9000 cal yr BP. Radiocarbon 28(2B):9801021.Google Scholar
Torres, R, Barton, ED, Miller, P, Fanjul, E. 2003. Spatial patterns of wind and sea surface temperature in the Galician upwelling region. Journal of Geophysical Research 108(C4): 3130; doi: 10.1029/2002JC001361.Google Scholar
Varela, RA, Rosón, G, Herrera, JL, Torres-Lopez, S, Fernandez-Romero, A. 2005. A general view of the hydrographic and dynamical patterns of the Rías Baixas adjacent sea area. Journal of Marine Systems 54(1–4):97113.Google Scholar
Wooster, WS, Bakun, A, McLain, DR. 1976. The seasonal upwelling cycle along the eastern boundary of the North Atlantic. Journal of Marine Research 34:131–41.Google Scholar