Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-24T16:55:28.207Z Has data issue: false hasContentIssue false

Radiocarbon-Dated Vegetal Remains from the Cave Ice Deposits of Velebit Mountain, Croatia

Published online by Cambridge University Press:  19 November 2018

Z Kern*
Affiliation:
Institute for Geological and Geochemical Research, Research Centre for Astronomy and Earth Sciences, MTA, Budaörsi út 45, Budapest H-1112, Hungary Isotope Climatology and Environmental Research Centre (ICER), MTA ATOMKI, Bem tér 18/c, Debrecen, Hungary
N Bočić
Affiliation:
University of Zagreb, Faculty of Science, Department of Geography, Marulićev trg 19/II Zagreb10000, Croatia
Gy Sipos
Affiliation:
University of Szeged, Department of Physical Geography and Geoinformatics, Geochronology Research Group, Egyetem utca 2-6, Szeged H-6722, Hungary
*
*Corresponding author. Email: [email protected].

Abstract

Organic material and a few tree trunks have been recovered from the shrinking ice deposits of Velebit Mountain, Croatia. Ten radiocarbon (14C) dates, seven new measurements and three recalibrated ones, from three cave ice deposits were evaluated. The new data argue for the preservation of a ~1000-yr-old deposit in the Kugina Ice Cave and a <500-yr-old accumulation in the Ledena Pit. A 14C age suggests that the ice in the lower section of Vukušić cave ice deposit is very likely older than 3500 yr. The work is in progress to verify this suggestion. Evaluation of the temporal distribution of the calibrated ages of the 14C-dated vegetal remains allowed constraining the accumulation and ablation history of cave ice in the northern and central Velebit. Periods lacking vegetal remains in these cave ice deposits (before the 11th century and in the 15th century) tend to match with similar patterns from other cave ice deposits from the Eastern Alps and the Swiss Jura Mountains, suggesting large-scale coherence regulating European cave ice mass balance changes over the past ~1200 yr.

Type
Soil
Copyright
© 2018 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 2nd Radiocarbon in the Environment Conference, Debrecen, Hungary, 3–7 July 2017

References

REFERENCES

Barović, G, Kicińska, D, Mandić, M, Mulaomerović, J. 2018. Ice Caves in Montenegro and Bosnia and Herzegovina In: Persoiu A, Lauritzen SE, editors. Ice Caves. Elsevier. p 263283.Google Scholar
Belmonte-Ribas, A, Sancho, C, Moreno, A, Lopez-Martinez, J, Bartolome, M. 2014. Present-day environmental dynamics in ice cave A294, Central Pyrenees, Spain. GFDQ 37/2:131140. doi:10.4461/GFDQ.2014.37.12.Google Scholar
Bočić, N. 2005. Kugina ledenica na srednjem Velebitu. Speleosfera 2:5458.Google Scholar
Bočić, N, Faivre, S, Kovačić, M, Horvatinčić, N. 2012. Cave development under the influence of Pleistocene glaciation in the Dinarides – an example from Štirovača Ice Cave (Velebit Mountain, Croatia). Zeitschrift für Geomorphologie 56:409433.Google Scholar
Bočić, N, Buzjak, N, Kern, Z. 2014. Some new potential subterranean glaciation research sites from Velebit Mountain (Croatia) In: Land L, Kern Z, Maggi V, Turri S, editors. Proceedings of the Sixth International Workshop on Ice Caves. August 17–22, Idaho Falls, Idaho, USA: NCKRI Symposium 4. Carlsbad (NM): National Cave and Karst Research Institute. p 72–6.Google Scholar
Borsato, A, Miorandi, R, Flora, O. 2006. I depositi di ghiaccio ipogei della Grotta dello Specchio e del Castelletto di Mezzo (Dolomiti di Brenta, Trentino): morfologia, età ed evoluzione recente. Studi Trent. Sci. Nat., Acta Geol 81:5374.Google Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337360.Google Scholar
Bronk Ramsey, C. 2008. Deposition models for chronological records. Quaternary Science Reviews 27:4260.Google Scholar
Buzjak, N, Bočić, N, Paar, D, Bakšić, D, Dubovečak, V. 2018. Ice caves in Croatia. In: Perşoiu, A, Lauritzen SE, editors. Ice Caves. Elsevier. p 335369.Google Scholar
Buzjak, N, Paar, D, Dubovečak, V., Bočić, N. 2014. The influence of karst topography to ice cave occurrence – Example of Ledena Jama in Lomska Duliba (Croatia). In: Land L, Kern Z, Maggi V, Turri S, editors. Proceedings of the Sixth International Workshop on Ice Caves. August 17–22, Idaho Falls, Idaho, USA: NCKRI Symposium 4. Carlsbad (NM): National Cave and Karst Research Institute. p 17–23.Google Scholar
Citterio, M, Turri, S, Perşoiu, A, Bini, A, Maggi, V. 2005. Radiocarbon ages from two ice caves in the Italian Alps and the Romanian Carpathians and their significance. In: Mavlyudov B. editor. Glacier Caves and Glacial Karst in High Mountains and Polar Regions. Moscow: Institute of Geography of the Russian Academy of Sciences. p 8792.Google Scholar
Fórizs, I, Kern, Z, Nagy, B, Szántó, Zs, Palcsu, L, Molnár, M. 2004. Environmental isotope study on perennial ice in the Focul Viu Ice Cave, Bihor Mts., Romania. Theoretical and Applied Karstology 17:6169.Google Scholar
Gómez-Lende, M. 2015. Las cuevas heladas en Picos de Europa: clima, morfologías y dinámicas [PhD thesis]. Universidad de Valladolid. 663 p.Google Scholar
Gradziński, M, Hercman, H, Peresviet-Soltan, A, Zelinka, J, Jelonek, M. 2016. Radiocarbon dating of fossil bats from Dobšina Ice Cave (Slovakia) and potential palaeoclimatic implications. Annales Societatis Geologorum Poloniae 86:341350. doi:10.14241/asgp.2016.016 Google Scholar
Hercman, H, Gąsiorowski, M, Gradziński, M, Kicińska, D. 2010. The first dating of cave ice from the Tatra Mountains, Poland and its implication to palaeoclimate reconstructions. Geochronometria 36:3138.Google Scholar
Horvatinčić, N. 1996. Isotopic measurement in ice, Ledenica Cave, Velebit, Croatia. (In Croatian with English summary). In: Kubelka D, Kovač J, editors. Proceedings of the Third Symposium of the Croatian Radiation Protection Association. Zagreb. p 297–302.Google Scholar
Horvatinčić, N, Krajcar-Bronić, I. 1998. 14C and 3H as indicators of the environmental contamination. RMZ–Materials and Geoenvironment 45:5660.Google Scholar
Horvatinčić, N, Barešic, J, Krajcar Bronić, I, Obelić, B. 2004. Measurement of low 14C activities in liquid scintillation counter in the Zagreb Radiocarbon Laboratory. Radiocarbon 46(1):105116.Google Scholar
Jelinić, I, Horvatinčić, N, Božić, V. 2001. Ledena Jama (The Ice Pit) in Lomska Duliba (in Croatian with English summary). Senjski zbornik 28:528 Google Scholar
Kern, Z. 2018. Dating cave ice deposits. In: Persoiu A, Lauritzen SE, editors. Ice Caves. Elsevier. p 109122.Google Scholar
Kern, Z, Perşoiu, A. 2013. Cave ice – the imminent loss of untapped mid-latitude cryospheric palaeoenvironmental archives. Quaternary Science Reviews 67:17.Google Scholar
Kern, Z, Bočić, N, Horvatinčić, N, Fórizs, I, Nagy, B, László, P. 2008. Palaeoenvironmental records from ice caves of Velebit Mountains – Ledena Pit and Vukušić Ice Cave, Croatia. In: Kadebskaya O, Mavlyudov BR, Pyatunin M. editors. 3rd International Workshop on Ice Caves Proceedings. Kungur. p 108–13.Google Scholar
Kern, Z, Fórizs, I, Horvatinčić, N, Széles, É, Bočić, N, Nagy, B. 2010. Glaciochemical investigations on the subterranean ice deposit of Vukušić Ice Cave, Velebit Mountain, Croatia. The Cryosphere Discussion 4:15611591. doi:10.5194/tcd-4-1561-2010.Google Scholar
Kuhta, M. 2002. Inventarizacija speleoloških objekata na podruèju Nacionalnog parka “Sjeverni Velebit”, Inventarisation of the speleological features in the area of the National park “Sjeverni Velebit”, Speleološki klub Željezničar, Speleological club Željezničar, Zagreb. 52 p.Google Scholar
Luetscher, M, Jeannin, PY, Haeberli, W. 2005. Ice caves as an indicator of winter climate evolution – a case study from the Jura Mountains. Holocene 15:982993.Google Scholar
Munroe, JS, O’Keefe, SS, Gorin, AL. 2018. Chronology, stable isotopes, and glaciochemistry of perennial ice in Strickler Cavern, Idaho, USA. GSA Bulletin 130:175192 doi:10.1130/B31776.1.Google Scholar
Nešić, D, Ćalić, J. 2018. Ice cave in Serbia. In: Perşoiu A, Lauritzen SE, editors. Ice Caves. Elsevier. p 611624.Google Scholar
Paar, D, Buzjak, N, Sironić, A, Horvatinčić, N. 2013. Paleoklimatske arhive dubokih jama Velebita. In: Marjanac L, editor. Knjiga sažetaka 3. znan. skup Geologija kvaratara u Hrvatskoj. Zagreb, Croatia: HAZU. p 3940.Google Scholar
Pennos, C, Styllas, M, Sotiriadis, Y, Vaxevanopoulos, M 2018. Ice caves in Greece. In: Perşoiu A, Lauritzen SE, editors. Ice Caves. Elsevier. p 385397.Google Scholar
Perșoiu, A, Onac, BP, Wynn, JG, Blaauw, M, Ionita, M, Hansson, M. 2017. Holocene winter climate variability in Central and Eastern Europe. Scientific Reports 7(1):1196 Google Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatte, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J, 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.Google Scholar
Sancho, C, Belmonte, A, López-Martínez, J, Moreno, A, Bartolomé, M, Calle, M, Santolaria, P. 2012. Potencial paleoclimático de la cueva helada A294 (Macizo de Cotiella, Pirineos, Huesca). Geogaceta 52:101104.Google Scholar
Sancho, C, Belmonte, Á, Bartolomé, M, Moreno, A, Leunda, M, López-Martínez, J. 2018. Middle-to-late Holocene palaeoenvironmental reconstruction from the A294 ice-cave record (Central Pyrenees, northern Spain). Earth and Planetary Science Letters 484:135144.Google Scholar
Skripkin, VV, Kovaliukh, NN. 1998. Recent developments in the procedures used at the SSCER Laboratory for the routine preparation of lithium carbide. Radiocarbon 40:211214.Google Scholar
Skripkin, VV, Buzynnyi, MG. 2017. Teflon vials for precise C-14 in benzene measurements by LSC technique. Biological and Chemical Research 4:229233.Google Scholar
Spötl, C, Reimer, PJ, Luetscher, M. 2014. Long-term mass balance of perennial firn and ice in an Alpine cave (Austria): Constraints from radiocarbon-dated wood fragments. The Holocene 24:165175. doi: 10.1177/0959683613515729.Google Scholar
Staut, M, Vreča, P, Merela, M, Brenčič, M. 2016. Recent fluctuations of ice deposits in the cave Ledena Jama pri Planini Viševnik, NW Slovenia. In: Mihevc, A, Hajna Zupan, N, Gostincar, P, editors. 7th International Workshop on Ice Caves: Program Guide and Abstracts. Postojna, Karst Research Institute ZRC SAZU. p 7374.Google Scholar
Stoffel, M, Luetscher, M, Bollschweiler, M, Schlatter, F. 2009. Evidence of NAO control on subsurface ice accumulation in a 1200 yr old cave-ice sequence, St. Livres ice cave, Switzerland. Quaternary Research 72:1626. doi:10.1016/j.yqres.2009.03.002.Google Scholar
Tans, PP, Mook, WG. 1980. Past atmospheric CO2 levels and 13C/12C ratios in tree rings. Tellus 32:268283.Google Scholar
Temovski, M. 2018. Ice caves in FYR of Macedonia. In: Persoiu A, Lauritzen SE, editors. Ice Caves. Elsevier. p 455478.Google Scholar
Yonge, CJ, MacDonald, WD. 1999. The potential of perennial cave ice in isotope paleoclimatology. Boreas 28:357362.Google Scholar
Zaninović, K, editor. 2008. Klimatski Atlas Hrvatske. Meteorological and Hydrological Service of Croatia, Zagreb.Google Scholar