Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-05T12:17:14.890Z Has data issue: false hasContentIssue false

Radiocarbon-Dated Subfossil Stomach Oil Deposits from Petrel Nesting Sites: Novel Paleoenvironmental Records from Continental Antarctica

Published online by Cambridge University Press:  18 July 2016

Achim Hiller
Affiliation:
Arbeitsgruppe Paläoklimatologie, Quartärzentrum der Universität Leipzig, Permoserstrasse 15 D-04303 Leipzig, Germany
Wolf-Dieter Hermichen
Affiliation:
Alfred-Wegener-Institut für Polar- und Meeresforschung, Forschungsstelle Potsdam Postfach 600149, D-14473 Potsdam, Germany
Ulrich Wand
Affiliation:
Alfred-Wegener-Institut für Polar- und Meeresforschung, Forschungsstelle Potsdam Postfach 600149, D-14473 Potsdam, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Radiocarbon dating is an important tool for reconstructing Late Quaternary paleoenvironmental history of the Antarctic continent. Because of the scarcity of datable material, new suitable substances are welcomed. We present here novel paleoenvironmental records—subfossil stomach oil deposits (mumiyo). This waxy organic material is found in petrel breeding colonies, especially in those of snow petrels, Pagodroma nivea. The substance is formed by accumulation and solidification of stomach oil regurgitated for the purpose of defense. We demonstrate and outline the usefulness and limitations of 14C dating mumiyo for determining dates of local ice retreat, moraines and petrel occupation history.

Type
I. 14C in the Reconstruction of Past Environments
Copyright
Copyright © the Department of Geosciences, The University of Arizona 

References

Beck, J. R. 1969 Food, moult and age of first breeding in the Cape pigeon, Daption capensis Linnaeus. British Antarctic Survey Bulletin 21: 3344.Google Scholar
Bolshiyanov, D., Verkulich, S., Klokov, V., Makeev, V. and Arslanov, H. 1989 Radiocarbon dating of sediments from the Bunger Oasis (East Antarctica). In Wand, U. and Strauch, G., eds. Proceedings of 5th Working Meeting, Isotopes in Nature. Leipzig, Central Institute of Isotope and Radiation Research: 4752.Google Scholar
Bolshiyanov, D., Verkulich, S., Pushina, Z. and Kirienko, E. 1991 Some features of the Late Pleistocene and Holocene history of the Bunger Hills (East Antarctica). In 6th International Symposium on Antarctic Earth Sciences , (Abstracts). Tokyo, National Institute of Polar Research: 6671.Google Scholar
Bulavintsev, V. I., Golovkin, A. N. and Denisova, A. V. 1993 Snow petrel as a prospective subject of combined ecological monitoring in the Antarctic. Antarktika. Doklady komissii 31: 167178 (in Russian).Google Scholar
Cavalieri, D. J. and Zwally, H. J. 1986 Satellite observations of sea ice. Advanced Space Research 5: 247255.Google Scholar
Colhoun, E. A. and Adamson, D. A. 1992 Raised beaches of the Bunger Hills, Antarctica. ANARE Reports , No. 136: 47 p.Google Scholar
Degens, E. T. 1969 Biogeochemistry of stable carbon isotopes. In Eglinton, G. and Murphy, M. T. J., eds., Organic Geochemistry. Berlin, Springer-Verlag: 304329.Google Scholar
Fraser, W. R. and Ainley, D. G. 1986 Ice edges and seabird occurrence in Antarctica. Bioscience 36: 258263.Google Scholar
Gordon, J. E. and Harkness, D. D. 1992 Magnitude and geographic variations of the radiocarbon content in antarctic marine life: Implications for reservoir corrections in radiocarbon dating. Quaternary Science Reviews 11: 697708.Google Scholar
Hiller, A., Wand, U., Kämpf, H. and Stackebrandt, W. 1988 Occupation of the Antarctic continent by petrels during the past 35 000 years: Inferences from a 14C study of stomach oil deposits. Polar Biology 9: 6977.Google Scholar
Jacob, J. 1982 Stomach oils. In Farner, D. S., King, J. R. and Parkers, K. C., eds., Avian Biology , Vol. 6. New York, Academic Press: 325340.Google Scholar
Jasper, J. P. and Hayes, J. M. 1990 A carbon isotope record of CO2 levels during the late Quaternary. Nature 347: 462464.Google Scholar
Kollatokudy, P. E., ed, 1976 Chemistry and Biogeochemistry of Natural Waxes. Amsterdam, Elsevier: 460 p.Google Scholar
Melles, M., Verkulich, S. R. and Hermichen, W. D. 1994 Radiocarbon dating of lacustrine and marine sediments from the Bunger Hills, East Antarctica. Antarctic Science 6(3): 375378.Google Scholar
Michel, R. L. and Linick, T. W. 1985 Uptake of bomb-produced carbon-14 by the Weddell Sea. Meteoritics 20: 423435.Google Scholar
Omoto, K. 1983 The problem and significance of radiocarbon geochronology in Antarctica. In Oliver, R. L., James, P. R. and Jago, J. B., eds., Antarctic Earth Science. Canberra, Australian Academy of Science: 450452.Google Scholar
Prince, P. A. and Morgan, R. A. 1987 Diet and feeding ecology of Procellariiformes. In Croxall, J. P., ed., Seabirds: Feeding Ecology and Role in Marine Ecosystems. Cambridge, Cambridge University Press: 135171.Google Scholar
Ryan, P. G., Steele, W. K., Siegfried, W. R. and Vogel, J. C. 1992 Radiocarbon dates of snow petrel regurgitations can reveal exposure periods for nunataks in Antarctica. South African Journal of Science 88: 578580.Google Scholar
Sarnthein, M., Winn, K., Duplessy, J.-C. and Fontugne, M. R. 1988 Global variations of surface ocean productivity in low and mid latitudes: Influence of CO2 reservoirs of the deep ocean and atmosphere during the last 21,000 years. Paleoceanography 3: 361399.Google Scholar
Stuiver, M. and Braziunas, T.F. 1985 Compilation of isotopic dates from Antarctica. Radiocarbon 27(2A): 117304.Google Scholar
Stuiver, M., Pearson, G. W. and Braziunas, T. 1986 Radiocarbon age calibration of marine samples back to 9000 cal yr bp. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 12th International 14C Conference. Radiocarbon 28(2B): 9801021.Google Scholar
Verkulich, S. R. and Hiller, A. 1994 Holocene deglaciation of the Bunger Hills revealed by 14C measurements on stomach oil deposits in snow petrel colonies. Antarctic Science 6(3): 395399.Google Scholar
Verkulich, S. R. and Melles, M. 1992 Composition and paleoenvironmental implications of sediments in a freshwater lake and in marine basins of Bunger Hills, East Antactica. Polarforschung 60: 169180.Google Scholar
Warham, J., Watts, R. and Dainty, R. J. 1976 The composition, energy content and function of the stomach oils of petrels (Order Procellariiformes). Journal of Experimental Marine Biology and Ecology 23: 113.Google Scholar
Watson, G. E. 1975 Birds of the Antarctic and Subantarctic. American Geophysical Union, Antarctic Research Series 24: 350 p.Google Scholar
Williams, P. M. and Linick, T. W. 1975 Use of naturally occurring radiocarbon as a long and short term tracer. In Isotope Ratios as Pollutant Source and Behaviour Indicators. Vienna, IAEA: 153167.Google Scholar
Yusupov, R. G., Dzhenchuraev, D. D. and Khatamov, S. 1979 Geochemical peculiarities of Central Asian mumiyo. Geokhimiya 10: 15341540 (in Russian).Google Scholar